Portal del coneixement obert de la UPC http://upcommons.upc.edu/e-prints Aquesta és una còpia de la versió author's final draft d'un article publicat a la revista Journal of optics.
Reinforcement learning involves decision making in dynamic and uncertain environments and constitutes an important element of artificial intelligence (AI). In this work, we experimentally demonstrate that the ultrafast chaotic oscillatory dynamics of lasers efficiently solve the multi-armed bandit problem (MAB), which requires decision making concerning a class of difficult trade-offs called the exploration–exploitation dilemma. To solve the MAB, a certain degree of randomness is required for exploration purposes. However, pseudorandom numbers generated using conventional electronic circuitry encounter severe limitations in terms of their data rate and the quality of randomness due to their algorithmic foundations. We generate laser chaos signals using a semiconductor laser sampled at a maximum rate of 100 GSample/s, and combine it with a simple decision-making principle called tug of war with a variable threshold, to ensure ultrafast, adaptive, and accurate decision making at a maximum adaptation speed of 1 GHz. We found that decision-making performance was maximized with an optimal sampling interval, and we highlight the exact coincidence between the negative autocorrelation inherent in laser chaos and decision-making performance. This study paves the way for a new realm of ultrafast photonics in the age of AI, where the ultrahigh bandwidth of light wave can provide new value.
Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions.
Reinforcement learning involves decision-making in dynamic and uncertain environments and constitutes a crucial element of artificial intelligence. In our previous work, we experimentally demonstrated that the ultrafast chaotic oscillatory dynamics of lasers can be used to efficiently solve the two-armed bandit problem, which requires decision-making concerning a class of difficult trade-offs called the exploration–exploitation dilemma. However, only two selections were employed in that research; hence, the scalability of the laser-chaos-based reinforcement learning should be clarified. In this study, we demonstrated a scalable, pipelined principle of resolving the multi-armed bandit problem by introducing time-division multiplexing of chaotically oscillated ultrafast time series. The experimental demonstrations in which bandit problems with up to 64 arms were successfully solved are presented where laser chaos time series significantly outperforms quasiperiodic signals, computer-generated pseudorandom numbers, and coloured noise. Detailed analyses are also provided that include performance comparisons among laser chaos signals generated in different physical conditions, which coincide with the diffusivity inherent in the time series. This study paves the way for ultrafast reinforcement learning by taking advantage of the ultrahigh bandwidths of light wave and practical enabling technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.