Escherichia coli O157:H7 is a major food-borne infectious pathogen that causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Here we report the complete chromosome sequence of an O157:H7 strain isolated from the Sakai outbreak, and the results of genomic comparison with a benign laboratory strain, K-12 MG1655. The chromosome is 5.5 Mb in size, 859 Kb larger than that of K-12. We identified a 4.1-Mb sequence highly conserved between the two strains, which may represent the fundamental backbone of the E. coli chromosome. The remaining 1.4-Mb sequence comprises of O157:H7-specific sequences, most of which are horizontally transferred foreign DNAs. The predominant roles of bacteriophages in the emergence of O157:H7 is evident by the presence of 24 prophages and prophage-like elements that occupy more than half of the O157:H7-specific sequences. The O157:H7 chromosome encodes 1632 proteins and 20 tRNAs that are not present in K-12. Among these, at least 131 proteins are assumed to have virulence-related functions. Genome-wide codon usage analysis suggested that the O157:H7-specific tRNAs are involved in the efficient expression of the strain-specific genes. A complete set of the genes specific to O157:H7 presented here sheds new insight into the pathogenicity and the physiology of O157:H7, and will open a way to fully understand the molecular mechanisms underlying the O157:H7 infection.
Recently, the first Neisseria gonorrhoeae strain (H041) that is highly resistant to the extended-spectrum cephalosporin (ESC) ceftriaxone, the last remaining option for empirical first-line treatment, was isolated. We performed a detailed characterization of H041, phenotypically and genetically, to confirm the finding, examine its antimicrobial resistance (AMR), and elucidate the resistance mechanisms. H041 was examined using seven species-confirmatory tests, antibiograms (30 antimicrobials), porB sequencing, N. gonorrhoeae multiantigen sequence typing (NG-MAST), multilocus sequence typing (MLST), and sequencing of ESC resistance determinants (penA, mtrR, penB, ponA, and pilQ). Transformation, using appropriate recipient strains, was performed to confirm the ESC resistance determinants. H041 was assigned to serovar Bpyust, MLST sequence type (ST) ST7363, and the new NG-MAST ST4220. H041 proved highly resistant to ceftriaxone (2 to 4 g/ml, which is 4-to 8-fold higher than any previously described isolate) and all other cephalosporins, as well as most other antimicrobials tested. A new penA mosaic allele caused the ceftriaxone resistance. In conclusion, N. gonorrhoeae has now shown its ability to also develop ceftriaxone resistance. Although the biological fitness of ceftriaxone resistance in N. gonorrhoeae remains unknown, N. gonorrhoeae may soon become a true superbug, causing untreatable gonorrhea. A reduction in the global gonorrhea burden by enhanced disease control activities, combined with wider strategies for general AMR control and enhanced understanding of the mechanisms of emergence and spread of AMR, which need to be monitored globally, and public health response plans for global (and national) perspectives are important. Ultimately, the development of new drugs for efficacious gonorrhea treatment is necessary.
Recently, the first Neisseria gonorrhoeae strain (H041) highly resistant to the expanded-spectrum cephalosporins (ESCs) ceftriaxone and cefixime, which are the last remaining options for first-line gonorrhea treatment, was isolated in Japan. Here, we confirm and characterize a second strain (F89) with high-level cefixime and ceftriaxone resistance which was isolated in France and most likely caused a treatment failure with cefixime. F89 was examined using six species-confirmatory tests, antibiograms (33 antimicrobials), porB sequencing, N. gonorrhoeae multiantigen sequence typing (NG-MAST), multilocus sequence typing (MLST), and sequencing of known gonococcal resistance determinants (penA, mtrR, penB, ponA, and pilQ). F89 was assigned to MLST sequence type 1901 (ST1901) and NG-MAST ST1407, which is a successful gonococcal clone that has spread globally. F89 has high-level resistance to cefixime (MIC ؍ 4 g/ml) and ceftriaxone (MIC ؍ 1 to 2 g/ml) and resistance to most other antimicrobials examined. A novel penA mosaic allele (penA-CI), which was penA-XXXIV with an additional A501P alteration in penicillin-binding protein 2, was the primary determinant for high-level ESC resistance, as determined by transformation into a set of recipient strains. N. gonorrhoeae appears to be emerging as a superbug, and in certain circumstances and settings, gonorrhea may become untreatable. Investigations of the biological fitness and enhanced understanding and monitoring of the ESCresistant clones and their international transmission are required. Enhanced disease control activities, antimicrobial resistance control and surveillance worldwide, and public health response plans for global (and national) perspectives are also crucial. Nevertheless, new treatment strategies and/or drugs and, ideally, a vaccine are essential to develop for efficacious gonorrhea management.
Objectives: Gonorrhoea and MDR Neisseria gonorrhoeae remain public health concerns globally. Enhanced, quality-assured, gonococcal antimicrobial resistance (AMR) surveillance is essential worldwide. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) was relaunched in 2009. We describe the phenotypic, genetic and reference genome characteristics of the 2016 WHO gonococcal reference strains intended for quality assurance in the WHO global GASP, other GASPs, diagnostics and research worldwide. Methods:The 2016 WHO reference strains (n¼14) constitute the eight 2008 WHO reference strains and six novel strains. The novel strains represent low-level to high-level cephalosporin resistance, high-level azithromycin resistance and a porA mutant. All strains were comprehensively characterized for antibiogram (n¼ 23), serovar, prolyliminopeptidase, plasmid types, molecular AMR determinants, N. gonorrhoeae multiantigen sequence typing STs and MLST STs. Complete reference genomes were produced using single-molecule PacBio sequencing. Results:The reference strains represented all available phenotypes, susceptible and resistant, to antimicrobials previously and currently used or considered for future use in gonorrhoea treatment. All corresponding resistance genotypes and molecular epidemiological types were described. Fully characterized, annotated and finished references genomes (n¼ 14) were presented. Conclusions:The 2016 WHO gonococcal reference strains are intended for internal and external quality assurance and quality control in laboratory investigations, particularly in the WHO global GASP and other GASPs, but also in phenotypic (e.g. culture, species determination) and molecular diagnostics, molecular AMR detection, molecular epidemiology and as fully characterized, annotated and finished reference genomes in WGS analysis, transcriptomics, proteomics and other molecular technologies and data analysis.
SummaryPseudomonas aeruginosa produces three types of bacteriocins: R-, F-and S-type pyocins. The S-type pyocin is a colicin-like protein, whereas the R-type pyocin resembles a contractile but non-flexible tail structure of bacteriophage, and the F-type a flexible but non-contractile one. As genetically related phages exist for each type, these pyocins have been thought to be variations of defective phage. In the present study, the nucleotide sequence of R2 pyocin genes, along with those for F2 pyocin, which are located downstream of the R2 gene cluster on the chromosome of P. aeruginosa PAO1, was analysed in order to elucidate the relationship between the pyocins and bacteriophages. The results clearly demonstrated that the R-type pyocin is derived from a common ancestral origin with P2 phage and the Ftype from l phage. This notion was supported by identification of a lysis gene cassette similar to those for bacteriophages. The gene organization of the R2 and F2 pyocin gene cluster, however, suggested that both pyocins are not simple defective phages, but are phage tails that have been evolutionarily specialized as bacteriocins. A systematic polymerase chain reaction (PCR) analysis of P. aeruginosa strains that produce various subtypes of R and F pyocins revealed that the genes for every subtype are located between trpE and trpG in the same or very similar gene organization as for R2 and F2 pyocins, but with alterations in genes that determine the receptor specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.