The Great East Japan Earthquake (GEJE) and resulting tsunami of March 11, 2011 gave rise to devastating damage on the Pacific coast of the Tohoku region. The Tohoku Medical Megabank Project (TMM), which is being conducted by Tohoku University Tohoku Medical Megabank Organization (ToMMo) and Iwate Medical University Iwate Tohoku Medical Megabank Organization (IMM), has been launched to realize creative reconstruction and to solve medical problems in the aftermath of this disaster. We started two prospective cohort studies in Miyagi and Iwate Prefectures: a population-based adult cohort study, the TMM Community-Based Cohort Study (TMM CommCohort Study), which will recruit 80 000 participants, and a birth and three-generation cohort study, the TMM Birth and Three-Generation Cohort Study (TMM BirThree Cohort Study), which will recruit 70 000 participants, including fetuses and their parents, siblings, grandparents, and extended family members. The TMM CommCohort Study will recruit participants from 2013 to 2016 and follow them for at least 5 years. The TMM BirThree Cohort Study will recruit participants from 2013 to 2017 and follow them for at least 4 years. For children, the ToMMo Child Health Study, which adopted a cross-sectional design, was also started in November 2012 in Miyagi Prefecture. An integrated biobank will be constructed based on the two prospective cohort studies, and ToMMo and IMM will investigate the chronic medical impacts of the GEJE. The integrated biobank of TMM consists of health and clinical information, biospecimens, and genome and omics data. The biobank aims to establish a firm basis for personalized healthcare and medicine, mainly for diseases aggravated by the GEJE in the two prefectures. Biospecimens and related information in the biobank will be distributed to the research community. TMM itself will also undertake genomic and omics research. The aims of the genomic studies are: 1) to construct an integrated biobank; 2) to return genomic research results to the participants of the cohort studies, which will lead to the implementation of personalized healthcare and medicine in the affected areas in the near future; and 3) to contribute the development of personalized healthcare and medicine worldwide. Through the activities of TMM, we will clarify how to approach prolonged healthcare problems in areas damaged by large-scale disasters and how useful genomic information is for disease prevention.
Laminin promotes epithelial cell adhesion in part through a site of nine amino acids CDPGYIGSR on the B1 chain. Using smaller synthetic peptides from this sequence as well as various peptides with amino acid substitutions, we find that the minimum sequence necessary for efficient cell adhesion as well as receptor binding is YIGSR. The deletion of tyrosine or the substitution of arginine in the peptides resulted in a significant loss of activity. The presence of an amide group on the terminal arginine of either peptide increases activity significantly. YIGSR is active in promoting the adhesion of a variety of epithelial cells; however, it is inactive with chondrocytes, fibroblasts, and osteoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.