In the online metric matching problem, there are servers on a given metric space and requests are given one-by-one. The task of an online algorithm is to match each request immediately and irrevocably with one of the unused servers. In this paper, we pursue competitive analysis for two variants of the online metric matching problem. The first variant is a restriction where each server is placed at one of two positions, which is denoted by OMM([Formula: see text]). We show that a simple greedy algorithm achieves the competitive ratio of 3 for OMM([Formula: see text]). We also show that this greedy algorithm is optimal by showing that the competitive ratio of any deterministic online algorithm for OMM([Formula: see text]) is at least 3. The second variant is the online facility assignment problem on a line. In this problem, the metric space is a line, the servers have capacities, and the distances between any two consecutive servers are the same. We denote this problem by OFAL([Formula: see text]), where [Formula: see text] is the number of servers. We first observe that the upper and lower bounds for OMM([Formula: see text]) also hold for OFAL([Formula: see text]), so the competitive ratio for OFAL([Formula: see text]) is exactly 3. We then show lower bounds on the competitive ratio [Formula: see text] [Formula: see text], [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] for OFAL([Formula: see text]), OFAL([Formula: see text]) and OFAL([Formula: see text]), respectively.
In this paper, we study two variants of the online metric matching problem. The first problem is the online metric matching problem where all the servers are placed at one of two positions in the metric space. We show that a simple greedy algorithm achieves the competitive ratio of 3 and give a matching lower bound. The second problem is the online facility assignment problem on a line, where servers have capacities, servers and requests are placed on 1-dimensional line, and the distances between any two consecutive servers are the same. We show lower bounds 1+ √ 6 (> 3.44948), 4+ √ 73 3 (> 4.18133) and 13 3 (> 4.33333) on the competitive ratio when the numbers of servers are 3, 4 and 5, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.