Living organisms including bacteria, plants and animals sense ambient temperature so that they can avoid noxious temperature or adapt to new environmental temperature. A nematode C. elegans can sense innocuous temperature, and navigate themselves towards memorize past cultivation temperature (Tc) of their preference. For this thermotaxis, AFD thermosensory neuron is pivotal, which stereotypically responds to warming by increasing intracellular Ca2+ level in a manner dependent on the remembered past Tc. We aimed to reveal how AFD encodes the information of temperature into neural activities. cGMP synthesis in AFD is crucial for thermosensation in AFD and thermotaxis behavior. Here we characterized the dynamic change of cGMP level in AFD by imaging animals expressing a fluorescence resonance energy transfer (FRET)-based cGMP probe specifically in AFD and found that cGMP dynamically responded to both warming and cooling in a manner dependent on past Tc. Moreover, we characterized mutant animals that lack guanylyl cyclases (GCYs) or phosphodiesterases (PDEs), which synthesize and hydrolyze cGMP, respectively, and uncovered how GCYs and PDEs contribute to cGMP and Ca2+ dynamics in AFD and to thermotaxis behavior.
Animals sense ambient temperature so that they can adjust their behavior to the environment; they avoid noxious heat and coldness and stay within a survivable temperature range. C. elegans can sense temperature, memorize past cultivation temperature and navigate towards preferable temperature, for which a thermosensory neuron, AFD, is essential. AFD responds to temperature increase from the past cultivation temperature by increasing intracellular Ca2+ level. We aimed to reveal how AFD encodes and memorizes the information of temperature. Although cGMP synthesis is crucial for thermosensation by AFD, whether and how cGMP level temporally fluctuates in AFD remained elusive. We therefore monitored cGMP level in AFD and found that cGMP dynamically responded to temperature change in a manner dependent on past cultivation temperature. Given that cGMP dynamics is supposed to be upstream of Ca2+ dynamics, our results suggest that AFD's memory is formed by simpler molecular mechanisms than previously expected from the Ca2+ dynamics. Moreover, we analyzed how guanylyl cyclases and phosphodiesterases, which synthesize and degrade cGMP, respectively, contributed to cGMP and Ca2+ dynamics and thermotaxis behavior.(175 words)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.