Neuropathic pain that occurs after peripheral nerve injury depends on the hyperexcitability of neurons in the dorsal horn of the spinal cord. Spinal microglia stimulated by ATP contribute to tactile allodynia, a highly debilitating symptom of pain induced by nerve injury. Signalling between microglia and neurons is therefore an essential link in neuropathic pain transmission, but how this signalling occurs is unknown. Here we show that ATP-stimulated microglia cause a depolarizing shift in the anion reversal potential (E(anion)) in spinal lamina I neurons. This shift inverts the polarity of currents activated by GABA (gamma-amino butyric acid), as has been shown to occur after peripheral nerve injury. Applying brain-derived neurotrophic factor (BDNF) mimics the alteration in E(anion). Blocking signalling between BDNF and the receptor TrkB reverses the allodynia and the E(anion) shift that follows both nerve injury and administration of ATP-stimulated microglia. ATP stimulation evokes the release of BDNF from microglia. Preventing BDNF release from microglia by pretreating them with interfering RNA directed against BDNF before ATP stimulation also inhibits the effects of these cells on the withdrawal threshold and E(anion). Our results show that ATP-stimulated microglia signal to lamina I neurons, causing a collapse of their transmembrane anion gradient, and that BDNF is a crucial signalling molecule between microglia and neurons. Blocking this microglia-neuron signalling pathway may represent a therapeutic strategy for treating neuropathic pain.
experiments in Fig. 5, the cultured microglia (see Supplementary Figure) that had been preincubated with or without ATP (50 mM) were injected intrathecally in normal rats (see Supplementary Methods for full details). Immunohistochemistry Transverse L5 spinal cord sections (30 mm) were cut and processed for immunohistochemistry with anti-P2X4R antibody (Alomone). Identification of the type of P2X 4 R-positive cells was performed with the following markers: for microglia, OX42 (Chemicon) and iba1 (a gift from S. Kohsaka); for astrocytes, GFAP (Boehringer Mannheim); for spinal cord neurons, NeuN (Chemicon) and MAP2 (Chemicon). To assess immunofluorescence staining of cells quantitatively, we measured the immunofluorescence intensity of the P2X 4 R or OX42 as the average pixel intensity within each cell (see also Supplementary Methods). Western blotting Western blot analysis of P2X 4 R expression in the membrane fraction from L4-L6 spinal cord was performed with anti-P2X4R polyclonal antibody (Oncogene) as described in detail in the Supplementary Methods. Microglial culture Rat primary cultured microglia were prepared in accordance with the method described previously 28. In brief, mixed glial culture was prepared from neonatal Wistar rats and maintained for 10-16 days in DMEM medium with 10% fetal bovine serum. Immediately before experiments, microglia were collected by a gentle shake as the floating cells over the mixed glial culture. The microglia were transferred to coverslips or to Eppendorf tubes for subsequent intrathecal administration. Statistics Statistical analyses of the results were made with Student's t-test, Student's paired t-test or the Mann-Whitney U-test.
Microglia, brain immune cells, engage in the clearance of dead cells or dangerous debris, which is crucial to the maintenance of brain functions. When a neighbouring cell is injured, microglia move rapidly towards it or extend a process to engulf the injured cell. Because cells release or leak ATP when they are stimulated or injured, extracellular nucleotides are thought to be involved in these events. In fact, ATP triggers a dynamic change in the motility of microglia in vitro and in vivo, a previously unrecognized mechanism underlying microglial chemotaxis; in contrast, microglial phagocytosis has received only limited attention. Here we show that microglia express the metabotropic P2Y6 receptor whose activation by endogenous agonist UDP triggers microglial phagocytosis. UDP facilitated the uptake of microspheres in a P2Y6-receptor-dependent manner, which was mimicked by the leakage of endogenous UDP when hippocampal neurons were damaged by kainic acid in vivo and in vitro. In addition, systemic administration of kainic acid in rats resulted in neuronal cell death in the hippocampal CA1 and CA3 regions, where increases in messenger RNA encoding P2Y6 receptors that colocalized with activated microglia were observed. Thus, the P2Y6 receptor is upregulated when neurons are damaged, and could function as a sensor for phagocytosis by sensing diffusible UDP signals, which is a previously unknown pathophysiological function of P2 receptors in microglia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.