Broadband magnetotelluric (MT) measurements were conducted in 2010 and 2011 in the vicinity of Shinmoe-dake Volcano in the Kirishima volcano group, Japan, where sub-Plinian eruptions took place 3 times during 26-27 January 2011. By combining the new observations with previous MT data, it is found that an anomalous phase in excess of 90°is commonly observed in the northern sector of the Kirishima volcano group. Because the anomalous phase is not explained by 1-D or 2-D structure with isotropic resistivity media, 3-D inversions were performed. By applying small errors to the anomalous phase, we successfully estimated a 3-D resistivity structure that explains not only the normal data but also the anomalous phase data. The final model shows a vertical conductor that is located between a deep-seated conductive body (at a depth greater than 10 km) and a shallow conductive layer. By applying the findings of geophysical and petrological studies of the 2011 sub-Plinian eruptions, we infer that the subvertical conductor represents a zone of hydrothermal aqueous fluids at temperatures over 400°C, in which a magma pathway (interconnected melt) is partially and occasionally formed before magmatic eruptions. To the north of the deep conductor, earthquake swarms occurred from 1968 to 1969, suggesting that these earthquakes were caused by volcanic fluids.
A conservative staggered‐grid finite difference method is presented for computing the electromagnetic induction response of an arbitrary heterogeneous conducting sphere by external current excitation. This method is appropriate as the forward solution for the problem of determining the electrical conductivity of the Earth’s deep interior. This solution in spherical geometry is derived from that originally presented by Mackie et al. (1994) for Cartesian geometry. The difference equations that we solve are second order in the magnetic field H, and are derived from the integral form of Maxwell’s equations on a staggered grid in spherical coordinates. The resulting matrix system of equations is sparse, symmetric, real everywhere except along the diagonal and ill‐conditioned. The system is solved using the minimum residual conjugate gradient method with preconditioning by incomplete Cholesky decomposition of the diagonal sub‐blocks of the coefficient matrix. In order to ensure there is zero H divergence in the solution, corrections are made to the H field every few iterations. In order to validate the code, we compare our results against an integral equation solution for an azimuthally symmetric, buried thin spherical shell model (Kuvshinov & Pankratov 1994), and against a quasi‐analytic solution for an azimuthally asymmetric configuration of eccentrically nested spheres (Martinec 1998).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.