The Late Devonian-Early Carboniferous (DC) Antler orogeny in southwestern Laurentia is contemporaneous with influx of clastic sediments, unconformities, and volcanism across much of western Laurentia (WL), suggesting the demise of the Paleozoic passive margin. However beyond the type Antler orogeny in southwestern Laurentia, the DC tectonic setting is still unclear. Westerly sediment provenance has been suggested as evidence of a convergent margin setting in a foreland basin. However, there is a gap in our understanding in central WL (Alberta and Montana) despite the fact that paleogeographic reconstructions place this area at the centre of WL. We provide detrital zircon (DZ) U-Pb geochronological data from strata in Alberta, Montana, and Nevada that are synchronous with the Antler orogeny to constrain sediment dispersal patterns and test the westerly sediment sourcing hypothesis. We show three DZ facies specific to particular geographic locations: DZ facies 1 in southern Nevada has a prominent subpopulation of early to mid-Mesoproterozoic (mode at 1430 Ma), DZ facies 2 in northeastern Nevada has a late Paleoproterozoic population (mode at 1823 Ma), and DZ facies 3 in Alberta and Montana displays Mesoproterozoic to Neoproterozoic (mode at 1036 Ma), mid-Paleozoic (mode at 411 Ma), and depositional (ca. 360-340 Ma) ages. North-south variation in DZ facies indicates that WL basins were locally sourced from various tectonic fragments having different signatures. Comparing our data with published data, we show that WL is dominated by DZ recycled from uplifted older strata with input from mid-Paleozoic arc terrane (s) to the west. Westerly sourcing is evidenced by the presence of near-depositional ages and affinities of this study’s DZ facies with strata located to the west. Our results and geological evidence from other studies suggest that the Antler orogeny triggered a depositional shift and controlled sediments dispersal in WL, signaling the demise of the Paleozoic passive margin.
The Devonian to Carboniferous (DC) transition coincided with a green-to-ice house climatic shift, anoxia, disappearance of lower latitude carbonate banks, and turnover from warm-to-cool water carbonate factories. In western Laurentia, the switch to carbonate factories dominated by cool-water biota was contemporaneous with a tectonically driven palaeogeographic change. To investigate this depositional shift and infer the relative impact of climate vs tectonics, a continental-scale sedimentological and geochemical study was conducted on twelve stratigraphic sections of DC strata from western Canada to southern Nevada (USA). The spatial–temporal distribution of microfacies records the turnover from [i] a Famennian lime mud-rich, shallow warm-water carbonate ramp with low sedimentation rates, mesotrophic conditions and tabular geometry to [ii] Tournaisian to Viséan lime mud-depleted and grainstone dominated cool-water carbonate ramp with anomalous high sedimentation rates, oligotrophic conditions and a pronounced slope. Positive excursions of δ18Ocarb (+ 2‰ V-PDB) and δ13Ccarb (+ 4‰ V-PDB) of Lower Mississippian carbonates likely correspond to the first cooling peak of the Carboniferous-Permian icehouse climate, following carbon withdrawal during black shale deposition during the late Famennian and early Tournaisian. However, late Tournaisian return of photozoan elements and their persistence throughout the Viséan suggests that warmer surface water existed, revealing a decoupling of the lower latitude ocean and the atmosphere. Shoaling of the thermocline was likely a result of cold-water upwelling along an open coast, as the Antler orogen no longer provided an oceanic obstruction to the west. This study shows that carbonate platforms are more susceptible to regional changes than global shifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.