Imbalanced classification on bankruptcy prediction is considered as one of the most important topics in financial institutions. In this context, various statistical and artificial intelligence methods have been proposed. Recently, deep learning algorithms are experiencing a resurgence of interest, and are widely used to build a prediction and classification models. To this end, we propose a novel deep learning-based approach called BSM-SAES. This approach combines Borderline Synthetic Minority oversampling technique (BSM) and Stacked AutoEncoder (SAE) based on the Softmax classifier. The aim is to develop an accurate and reliable bankruptcy prediction model which includes the features extraction process. To assess the classification performance of our proposed model, k-nearest neighbor, decision tree, support vector machine, and artificial neural network, C5.0 that are machine learning methods, are applied. We evaluate our proposed approach on the Polish imbalanced datasets. The obtained results confirm the efficiency of our proposed model compared to other machine learning models regarding predicting and classifying the financial status of a firm.
Nowadays, humanity is facing one of the most dangerous pandemics known as COVID-19. Due to its high inter-person contagiousness, COVID-19 is rapidly spreading across the world. Positive patients are often suffering from different symptoms that can vary from mild to severe including cough, fever, sore throat, and body aches. In more dire cases, infected patients can experience severe symptoms that can cause breathing difficulties which lead to stern organ failure and die. The medical corps all over the world are overloaded because of the exponentially myriad number of contagions. Therefore, screening for the disease becomes overwrought with the limited tools of test. Additionally, test results may take a long time to acquire, leaving behind a higher potential for the prevalence of the virus among other individuals by the patients. To reduce the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.