The key steps of a transfer of two-dimensional (2D) materials are the delamination of the as-grown material from a growth substrate and the lamination of the 2D material on a target substrate. In state-of-the-art transfer experiments, these steps remain very challenging, and transfer variations often result in unreliable 2D material properties. Here, it is demonstrated that interfacial water can insert between graphene and its growth substrate despite the hydrophobic behavior of graphene. It is understood that interfacial water is essential for an electrochemistry-based graphene delamination from a Pt surface. Additionally, the lamination of graphene to a target wafer is hindered by intercalation effects, which can even result in graphene delamination from the target wafer. For circumvention of these issues, a direct, support-free graphene transfer process is demonstrated, which relies on the formation of interfacial water between graphene and its growth surface, while avoiding water intercalation between graphene and the target wafer by using hydrophobic silane layers on the target wafer. The proposed direct graphene transfer also avoids polymer contamination (no temporary support layer) and eliminates the need for etching of the catalyst metal. Therefore, recycling of the growth template becomes feasible. The proposed transfer process might even open the door for the suggested atomic-scale interlocking-toy-brick-based stacking of different 2D materials, which will enable a more reliable fabrication of van der Waals heterostructure-based devices and applications.
The coaxial stacking of two single-wall carbon nanotubes (SWCNTs) into a double-wall carbon nanotube (DWCNT), forming a so-called one-dimensional van der Waals structure, leads to synergetic effects that dramatically affect the optical and electronic properties of both layers. In this work, we explore these effects in purified DWCNT samples by combining absorption, wavelength-dependent infrared fluorescence−excitation (PLE), and wavelength-dependent resonant Raman scattering (RRS) spectroscopy. Purified DWCNTs are obtained by careful solubilization that strictly avoids ultrasonication or by electronic-type sorting, both followed by a density gradient ultracentrifugation to remove unwanted SWCNTs that could obscure the DWCNT characterization. Chirality-dependent shifts of the radial breathing mode vibrational frequencies and transition energies of the inner and outer DWCNT walls with respect to their SWCNT analogues are determined by advanced two-dimensional fitting of RRS and PLE data of DWCNT and their reference SWCNT samples. This exhaustive data set verifies that fluorescence from the inner DWCNT walls of wellpurified samples is severely quenched through efficient energy transfer from the inner to the outer DWCNT walls. Combined analysis of the PLE and RRS results further reveals that this transfer is dependent on the inner and outer wall chirality, and we identify the specific combinations dominant in our DWCNT samples. These obtained results demonstrate the necessity and value of a combined structural characterization approach including PLE and RRS spectroscopy for bulk DWCNT samples.
Even though ultrasonication is considered to be an effective method to disperse carbon nanotubes (CNTs), its devastating effects on the nanotubes are often neglected. Here, even mild ultrasonication is found to rapidly extract the inner single-wall CNTs (SWCNTs) from the outer shells of the double-wall CNTs (DWCNTs). As-synthesized DWCNTs are gently solubilized in a surfactant solution, strictly avoiding any ultrasonication, followed by two consecutive density gradient ultracentrifugation (DGU) steps to obtain a purified colloidal solution of isolated DWCNTs. The latter is carefully selected based on in situ resonant Raman (RRS) and fluorescence (PL) spectroscopy, measured as a function of depth directly in the ultracentrifuge tube after DGU. These purified DWCNTs are ultrasonicated in successive time steps while intermittently probing the sample via RRS and PL spectroscopy. These results unravel the very fast increasing yet saturating extraction mechanism that leads to the formation of fluorescing SWCNTs. A statistical high-resolution transmission electron microscopy study confirms the drastic increase in SWCNTs after ultrasonication, and evidences that ultrasonication forms SWCNTs from both the inner and outer shells of the DWCNTs. This study demonstrates how easily ultrasonication extracts SWCNTs from individually solubilized DWCNTs, unavoidably complicating any further spectroscopic studies on DWCNTs severely.
We show that ultrasonication extracts inner tubes from double-wall carbon nanotubes (DWCNT), and characterize the process by density gradient ultracentrifugation (DGU) combined with in situ spectroscopic characterization in the density gradient. Our observations also cast new light on the question whether or not the inner tubes of DWCNTs fluoresce, which has been the subject of a long-standing debate, even though single‐DWCNT experiments have already shown drastic PL‐quenching for the inner CNT [1]. Indeed, in previous studies to characterise the PL from DWCNTs, they were typically solubilised using sonication, while here we see that upon sonication, the extraction of the inner tubes from the DWCNTs leads to much more, efficiently fluorescing SWCNTs. First, the DWCNTs were purified from SWCNTs and bundles using density gradient ultracentrifugation (DGU). Then, sonication is applied, after which the extracted inner tubes were separated from the DWCNTs by DGU and characterised by in situ resonant Raman and PL‐spectroscopy as a function of height in the centrifuge tube [2]. These subsequent in situ DGU experiments unambiguously prove the extraction of inner SWCNTs from DWCNTs, even by very brief sonication, and sonication-time-dependent measurements show that the process quickly saturates. [1] D. Levshov, R. Parret, H.-N. Tran, T. Michel, T.T. Cao, V.C. Nguyen, R. Arenal, V.N. Popov, S.B. Rochal, J.-L. Sauvajol, A.-A. Zahab, M. Paillet, Phys. Rev. B 96, 195410 (2017). [2] S. Cambré, P. Muyshondt, R. Federicci, W. Wenseleers, Nanoscale 7, 20015 (2015).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.