To study relationship between quantum finite automata and probabilistic finite automata, we introduce a notion of probabilistic reversible automata (PRA, or doubly stochastic automata). We find that there is a strong relationship between different possible models of PRA and corresponding models of quantum finite automata. We also propose a classification of reversible finite 1-way automata.
Abstract.In this paper the notion of quantum finite one-counter automata (QF1CA) is introduced. Introduction of the notion is similar to that of the 2-way quantum finite state automata in [1]. The wellformedness conditions for the automata are specified ensuring unitarity of evolution. A special kind of QF1CA, called simple, that satisfies the well-formedness conditions is introduced. That allows specify rules for constructing such automata more naturally and simpler than in general case. Possible models of language recognition by QF1CA are considered. The recognition of some languages by QF1CA is shown and compared with recognition by probabilistic counterparts.
We study the recognition of R-trivial idempotent (R1) languages by various models of "decide-and-halt" quantum finite automata (QFA) and probabilistic reversible automata (DH-PRA). We introduce bistochastic QFA (MM-BQFA), a model which generalizes both Nayak's enhanced QFA and DH-PRA. We apply tools from algebraic automata theory and systems of linear inequalities to give a complete characterization of R1 languages recognized by all these models. We also find that "forbidden constructions" known so far do not include all of the languages that cannot be recognized by measure-many QFA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.