Subjective image-quality measurement plays a critical role in the development of image-processing applications. The purpose of a visual-quality metric is to approximate the results of subjective assessment. In this regard, more and more metrics are under development, but little research has considered their limitations. This paper addresses that deficiency: we show how image preprocessing before compression can artificially increase the quality scores provided by the popular metrics DISTS, LPIPS, HaarPSI, and VIF as well as how these scores are inconsistent with subjective-quality scores. We propose a series of neural-network preprocessing models that increase DISTS by up to 34.5%, LPIPS by up to 36.8%, VIF by up to 98.0%, and HaarPSI by up to 22.6% in the case of JPEG-compressed images. A subjective comparison of preprocessed images showed that for most of the metrics we examined, visual quality drops or stays unchanged, limiting the applicability of these metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.