The Alzheimer’s Disease main impact on the brain is the memory loss effect. Therefore, in the “neuron world” this makes a disorder of signal impulses and disconnects neurons that causes the neuron death and memory loss. The research main aim is to determine the average loss of signal and develop memory loss prediction models for artificial neuron network. The Izhikevich neural networking model is often used for constructing neuron neural electrical signal modeling. The neuron model signal rhythm and spikes are used as model neuron characteristics for understanding if the system is stable at certain moment and in time. In addition, the electrical signal parameters are used in similar way as they are used in a biological brain. During the research the neural network initial conditions are assumed to be randomly selected in specified the working neuron average sigma I parameters range.
Traditional nonintrusive object inspection methods are complex or extremely expensive to apply in certain cases, such as inspection of enormous objects, underwater or maritime inspection, an unobtrusive inspection of a crowded place, etc. With the latest advances in robotics, autonomous self-driving vehicles could be applied for this task. The present study is devoted to a review of the existing and novel technologies and methods of using autonomous self-driving vehicles for nonintrusive object inspection. Both terrestrial and maritime self-driving vehicles, their typical construction, sets of sensors, and software algorithms used for implementing self-driving motion were analyzed. The standard types of sensors used for nonintrusive object inspection in security checks at the control points, which could be successfully implemented at self-driving vehicles, along with typical areas of implementation of such vehicles, were reviewed, analyzed, and classified.
Linear stability analysis of a steady convective flow in a tall vertical annulus caused by nonlinear heat sources is conducted in the paper. Heat sources are generated as a result of a chemical reaction. The effect of radial cross-flow through permeable porous walls of the annulus is analyzed. The problem is relevant to biomass thermal conversion. The base flow solution is obtained by solving nonlinear boundary value problem. Linear stability analysis is performed, using collocation method. The calculations show that radial inward or outward flow has a stabilizing effect on the flow, while the increase in the Frank–Kamenetskii parameter (proportional to the intensity of the chemical reaction) destabilizes the flow. The increase in the Reynolds number based on the radial velocity leads to the appearance of the second minimum on the marginal stability curves. The rate of increase in the critical Grashof number with respect to the Reynolds number is different for inward and outward radial flows.
This paper describes a way of parallel algorithm technology usage for analyzing physical processes parabolic differential problems on the surface. This analysis determine the temperature distribution on the surface. Such analysis can fit calculation of Maxwell and Maxwell-Stokes equations and can be focused on mathematical models that can be reduced to the absorption or diffusion-convection-reaction equations with the initial and boundary conditions of different order (1st, 2nd, 3rd order of boundary conditions). Parallel computing technologies usage provides an acceleration possibilities of mentioned calculations in different way and effect depending of parallel technology type and method combinations used during the calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.