Robinia pseudoacacia is one of the most frequent non‐native species in Europe. It is a fast‐growing tree of high economic and cultural importance. On the other hand, it is an invasive species, causing changes in soil chemistry and light regime, and consequently altering the plant communities. Previously published models developed for the potential distribution of R. pseudoacacia concerned 2070, and were based mainly on data from Western and Central Europe; here we extended these findings and included additional data from Eastern Europe. To fill the gap in current knowledge of R. pseudoacacia distribution and improve the reliability of forecasts, we aimed to (i) determine the extent to which the outcome of range modeling will be affected by complementing R. pseudoacacia occurrence data with sites from Central, Southeastern, and Eastern Europe, (ii) identify and quantify the changes in the availability of climate niches for 2050 and 2070, and discuss their impacts on forest management and nature conservation. We showed that the majority of the range changes expected in 2070 will occur as early as 2050. In comparison to previous studies, we demonstrated a greater eastward shift of potential niches of this species and a greater decline of potential niches in Southern Europe. Consequently, future climatic conditions will likely favor the occurrence of R. pseudoacacia in Central and Northeastern Europe where this species is still absent or relatively rare. There, controlling the spread of R. pseudoacacia will require monitoring sources of invasion in the landscape and reducing the occurrence of this species. The expected effects of climate change will likely be observed 20 years earlier than previously forecasted. Hence we highlighted the urgent need for acceleration of policies aimed at climate change mitigation in Europe. Also, our results showed the need for using more complete distribution data to analyze potential niche models.
Climate change has a significant impact on natural ecosystems, particularly on floodplain forests that are among the most transformed ecosystems in the world. The climate sensitivity of dominant species is likely to play a key role in determining the susceptibility of flooded forests to climate changes. Here, we use dendrochronological approaches and local climate records from 1880 to 2015 to assess the response in pedunculate oak (Quercus robur L.) trees growing in a floodplain of the Dnipro River near Kyiv to climatic variables. Correlation analysis reveals the strongest positive association of the Q. robur tree-ring width chronology with May-June precipitation, May-June temperature, and May self-calibrating Palmers drought severity indices (scPDSI). The moving-window correlation analysis points to positive association with the scPDSI after the 1950s, when local river regulation was implemented. The positive correlation with current March precipitation is the least expected change in the oak growth-to-climate relationship that occurred in the aftermath of human alterations in the local river and regional climate changes. This study discusses the probable ecological consequences and ecophysiological mechanisms of observable climate-to-growth relationships and their temporal stability.
The radial growth of pedunculate oak (Quercus robur), a species often ecologically dominating European deciduous forests, is closely tied up with local environmental variables. The oak tree-ring series usually contain a climatic and hydrologic signal that allows assessing the main drivers of tree growth in various ecosystems. Understanding the climate-growth relationship patterns in floodplains is important for providing insights into the species persistence and longevity in vulnerable riverine ecosystems experiencing human-induced hydrology alteration. Here, we use 139 years long instrumental records of local temperature, precipitation, and water levels in the Dnipro River in Kyiv to demonstrate that the implementation of river regulation has decoupled the established relationship between the radial growth of floodplain oak and local hydro-climatic conditions. Before the river flow has been altered by engineering modifications of 1965–1977, the water level in the Dnipro River was the key driver of oak radial growth, as reflected in the tree-ring width and earlywood width. The construction of two dams has altered the seasonal distribution of water level diminishing the positive effect of high water on oak growth and subsequently reversing this trend to negative, resulting from a seasonal ground water surplus. The decrease in the correlation between oak growth indices and the river’s water level in April–June was unprecedentedly rapid and clearly distinguishable among other changes in the growth-to-climate relationship. Our findings further demonstrate that trees growing in areas exposed to urban development are the most susceptible to downside effects of river regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.