Land subsidence caused by mining activities is an example of human transformation of the natural environment and leads to changes in land use. The study covers an area of 958 ha in the Silesian Upland, southern Poland. Records from the period 1890–1990 document the presence of subsidence effects in 82.9% of the study area and the maximum displacement figure is more than 30 m which translates to an average rate of 0.3 m per year. It was found that subsidence basins serve as the new local erosion base and new sedimentation basins. They are filled with sediments whose level of pollution ranges from moderate to heavy and extremely heavy. Subsidence has caused a dramatic change in the local hydrology, including the quality and quantity of the water. The specifics involve: the emergence of new closed drainage catchments with a total area of 651.1 ha; an increase in the total watercourse length (from 0.9 to 5.7 km); an increase in the river network density (from 0.09 to 0.56 km km−2); a decrease in the number (from 81 to 48) and an increase in the area (from 23.8 to 58.4 ha) of lakes and ponds; an increase in the lake coverage ratio (from 2.5% to 6.1%) and in water pollution. Subsidence has limited the potential land uses, which led to a decrease in arable land from 619.0 to 122.5 ha that gave way to other land uses, including those equivalent to wasteland. Copyright © 2016 John Wiley & Sons, Ltd.
An assessment was carried out of the anthropogenic enrichment of the chemical composition of the bottom sediments of water bodies situated in an area with an urban and industrial character (63.7% of the total area). The endorheic catchments of the water bodies studied are lithologically uniform with sandy formations accounting for more than 90% of the surface area. On the basis of geoaccumulation index values, it was found that the bottom sediments of the water bodies studied were contaminated with the following elements: Cd, Zn, S, As, Pb, Sr, Co, Cr, Cu, Ba, Ni, V, Be, in degrees ranging from moderate to extreme, with lower contamination (or absence of contamination) with the same elements being found in the formations present in the vicinity and in the substrate of the basins of water bodies. It was found that one consequence of the fact that these water bodies are located in urban and industrial areas is that there is anthropogenic enrichment of the chemical composition of bottom sediments with certain basic components (organic matter, Mn, Ca and P compounds) and trace elements: Cd, Zn, Pb, Sb, As, Cu and Co, Br, Ni, S, Be, Cs, Sr, V, Cr, Sc, Ba, U, Ce, Eu and Th, with virtually no enrichment of sediments with the other basic and trace components analysed (La, Rb, K2O, Nd, Sm, Na2O, Hf, SiO2, Zr).
The aim of the study was to identify patterns of ice-related phenomena on 39 selected anthropogenic water bodies in the Silesian Upland in southern Poland. The core research was conducted in the winter season of 2009/2010, between December and March. Field measurements and observations were conducted every two days during the freezing and thawing phases and every four days at the time of continuous ice cover. Data were interpolated to cover days without observations. Differences in the ice cover phenology on these water bodies were caused by natural conditions (morphometric and hydro-meteorological) and human activity (thermal pollution). Two principal groups of anthropogenic water bodies were identified in terms of the ice phenomena: lakes and ponds with a natural or quasi-natural pattern of ice phenomena and water bodies featuring various degrees of human impact. The thickness of the ice-cover was found to vary, which was a source of great danger to the users of the water bodies in the winter season.
The impact of multiple years of underground mining of minerals on changes in the elevation of an urban area has been evaluated using the case study of Bytom in southern Poland. Between 1883 and 2011, that city experienced changes in absolute minimum (from 250.0 to 243.0 m a.s.l.) and maximum (from 340.0 to 348.4 m a.s.l.) elevations. During that period, the difference between minimum and maximum elevations increased from 90.0 to 105.4 m. The consequence of underground mining has been the formation of extensive subsidence basins with a maximum depth of 35 m. Where the terrain became raised, its elevation rose most commonly by 1.1 m to 5.0 m, with maximum increase in elevation caused by human activity amounting to 35 m. The rate of anthropogenic subsidence in the city between 1883 and 2011 averaged 43 mm/year (5.5 m over the study period).
Ice phenomena are construed as the occurrence of ice in water irrespective of its structure, form, and duration. One of the most frequently discussed research problems is the possibility of using long-term ice phenology as an indicator of changes of the thermal conditions of ambient air. The study used correlation analysis and regression models in order to determine changes in the parameters studied over time. In order to compare the ice regime of the study reservoir and other lakes in the region, discriminant function analysis, principal components analysis (PCA), and canonical redundancy analysis (RDA) were applied. During the 52 winter seasons studied (1964–2015), there were weak but still statistically significant trends concerning the increase in air temperature in the region (by 0.3 °C per decade), the reduction in the number of days with ice cover (by 8.6 days per decade) and the decline in the maximum and average thicknesses of lake ice (by 2.0 cm and 1.2 cm per decade). The low average depth and volume capacity are reflected in the rapid freezing rate of the reservoir, and its location results in a longer duration of ice cover, greater ice thickness, and later dates of its melting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.