The unsteady magnetohydrodynamics (MHD) flow of nanofluid with variable fluid properties over an inclined stretching sheet in the presence of thermal radiation and chemical reaction is studied taking into account the effect of variable fluid properties in thermal conductivity and diffusion coefficient. The governing partial differential equations are transformed into ordinary differential equations by using similarity transformation. The numerical solutions of the problem are obtained by using the fourth order Runge-Kutta method in line with the shooting technique. It is found that the increase in both thermal conductivity and radiative heat flux decreases the heat transfer rate but increases the skin friction and mass transfer rates. It is further observed that the increase in porosity parameter and magnetic field reduces the skin friction, heat, and mass transfer rates.
A mathematical model has been developed and used to study pulsatile blood flow and mass transfer through a stenosed artery in the presence of body acceleration and magnetic fields. An explicit Finite Difference Method (FDM) has been used to discretize the formulated mathematical model. The discretized model equations were solved in MATLAB software to produce simulations. The effect of Hartman number, Reynolds number, Schmidt number, stenotic height, body acceleration and chemical reactions have been investigated. It has been observed that, the velocity, concentration and skin friction, decrease with increasing stenotic height. Velocity on the other hand increases, as body acceleration increases. It has further been observed that as the Hartman number increases, both the radial and axial velocities diminish. Increase of the Reynolds number results in the increase of the velocity profiles. The higher the chemical reaction parameter is, the lower are the concentration profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.