MicroRNAs (miRNAs) are a novel group of universally present small non-coding RNAs that have been implicated in wide ranging physiological processes and thereby are critical in the manifestation of diverse diseases. Since their discovery as developmental regulators in C.elegans, they have come a long way and are currently associated with normal and diverse pathophysiological states including Parkinson's syndrome, cardiac hypertrophy, viral infection, diabetes and several types of cancer. Of special significance is their involvement in diabetes, an area in which several emerging reports point to the fact that these small RNA species could be special and critical in this complex disease and they or their specific inhibitors may be exploited as targets for therapeutic intervention. The stable nature of these miRNAs over mRNAs is an added advantage of them being projected for the same. This review focuses on and discusses the current diabetic epidemic and the potential role(s) of these miRNAs in various physiological processes that lead to the diabetic phenotype with an objective of better understanding the emerging mechanisms of these small molecules in the development and progression of diabetes and its complications.
Apoptosis or programmed cell death is an extremely coordinated phenomenon that involves the participation of a complex interacting crosstalk between the endoplasmic reticulum and mitochondria. This involves a series of signaling molecules like stress kinases, caspases, Bcl-2 family of proteins, etc. that coordinately induce apoptosis by releasing apoptotic proteins from the mitochondria and mediate DNA damage of the cell. Among the stress kinases, JNK, a member of the MAPK family has been believed to be critically mediating these apoptotic phenomena. The involvement of JNK has been clouded by controversies because of its role both as a pro-apoptotic and an anti-apoptotic mediator. A very significant initiator of JNK activation is the pro-inflammatory cytokine, IL-1β, levels of which are significantly elevated in varied diseases especially diabetes where it is believed to significantly contribute to pancreatic β-cell death. During apoptotic cell death, the endoplasmic reticulum and the mitochondrion participate in a relay of cellular events that determine the onset of the classical apoptotic pathways. Here we discuss the details of this ER-mitochondrial crosstalk and the role of JNK herein that ultimately culminates into apoptotic cell death that is evident in various pathophysiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.