Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Intercellular communication and environmental sensing are most often mediated through ligand-receptor binding and signaling. This is true for both host cells and microbial cells. The ligands can be proteins (cytokines, growth factors and peptides), modified lipids, nucleic acid derivatives and small molecules generated from metabolic pathways. These latter non-protein metabolites play a much greater role in the overall function of mucosal immunity than previously recognized and the list of potential immunomodulatory molecules derived from the microbiome is growing. The most well-studied microbial signals are the non-metabolite microbe-associated molecular pattern (MAMP) molecules, such as lipopolysaccharide and teichoic acid, that bind to host Pattern Recognition Receptors (PRR). Here, we will highlight the immunomodulatory activities of other microbiome-derived molecules, such as short-chain fatty acids, bile acids, uric acid, prostaglandins, histamine, catecholamines, aryl hydrocarbon receptor ligands and 12,13-diHOME.
Strain SC5314 is the most widely studied strain of Candida albicans. Despite C. albicans being the most commonly isolated yeast from the human gastrointestinal (GI) microbiome, strain SC5314 does not stably colonize the mouse GI tract long term, even after antibiotic disruption. In contrast, strain CHN1 will stably colonize the mouse GI tract long term. Comparative genomic analysis of strain CHN1 indicates that it belongs to a different evolutionary clade of C. albicans than strain SC5314. Previous studies from our laboratory have shown that colonization by strain CHN1 causes a change in the GI bacterial microbiome of mice and predisposes them to more robust Th2 immune responses. Despite this, little is known about the GI microbial ecology of SC5314 vs. CHN1 and subsequent host responses. Using a short-term antibiotic disruption model in C57BL/6 mice, we have been able to observe significantly different colonization kinetics between these two C. albicans strains, with CHN1 establishing stable long-term colonization. In contrast, colonization by SC5314 was lower, highly variable and cage-dependent. C. albicans colonization kinetics impacted the composition of the bacterial microbiome with a marked effect on the levels of Lactobacillus and Enterococcus. qPCR analysis of 46 host immune response genes did not detect significant differences in host gene expression between SC5134 and CHN1 colonized mice, except for chitinase expression. Thus, these studies suggest that yeast-bacteria interactions in the microbiome may be far more important in determining long-term colonization potential of C. albicans and secondary immunomodulatory effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.