Plastic compression of hyperhydrated collagen gels produces tissue-like scaffolds of enhanced biomechanical properties. By increasing collagen density, these scaffolds could be developed into highly Biomimetic cell-seeded templates. When utilizing three-dimensional (3-D) scaffold systems for tissue repair, and indeed when investigating the cytocompatibility of two-dimensional (2-D) surfaces, the cell seeding density is often overlooked. In this study, we investigated this potentially critical parameter using MG-63 cells seeded in the dense collagen scaffolds. This is conducted within the overall scope of developing these scaffolds for bone repair. Cell proliferation, osteoblastic differentiation, and matrix remodelling capacity in relation to various seeding densities, ranging from 10(5) to 10(8) cells/ml compressed collagen, were evaluated in vitro. This was performed using the AlamarBlue assay, quantitative polymerase chain reaction (qPCR), and tensile mechanical analysis respectively. Variations in cell seeding density significantly influenced cell proliferation where lower initial seeding density resulted in higher proliferation rates as a function of time in culture. Gene transcription levels for alkaline phosphatase (ALPL), runt-related transcription factor 2 (RUNX2), and osteonectin (SPARC) were also found to be dependent on the cell density. While ALPL transcription was down-regulated with culturing time for all seeding densities, there was an increase in RUNX2 and SPARC transcription, particularly for scaffolds with cell densities in the range 10(6)-10(7) cells/ml collagen. Furthermore, this range of seeding density affected cell capacity in conducting collagenous matrix degradation as established by analyzing matrix metalloproteinase 1 (MMP1) transcription and scaffold mechanical properties. This study has shown that the seeded cell population in the three-dimensional dense collagen scaffolds clearly affected the degree of osteoblastic cell proliferation, differentiation, and some aspects of matrix remodelling activity. The seeding density played a major role in influencing the corresponding cell differentiation and cell-matrix interaction.
Plastic compression of hydrated collagen gels rapidly produces biomimetic scaffolds of improved mechanical properties. These scaffolds can potentially be utilised as cell seeded systems for bone tissue engineering. This work investigated the influence of multiple unconfined compression on the biocompatibility and mechanical properties of such systems. Single and double compressed dense collagen matrices were produced and characterised for protein dry weight, morphology and mechanical strength. Compression related maintenance of the seeded HOS TE85 cell line viability in relation to the extent of compression was evaluated up to 10 days in culture using the TUNEL assay. Fluorescence Live/Dead assay was conducted to examine overall cell survival and morphology. Cell induced structural changes in the dense collagenous scaffolds were assessed by routine histology. The mechanical properties of the cellular scaffolds were also evaluated as a function of time in culture. It is clear that a single plastic compression step produced dense collagenous scaffolds capable of maintaining considerable cell viability and function as signs of matrix remodeling, and maintenance of mechanical properties were evident. Such scaffolds should therefore be further developed as systems for bone tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.