Engineered inorganic nanoparticles are essential components in the development of nanotechnologies. For applications in nanomedicine, particles need to be functionalized to ensure a good dispersibility in biological fluids. In many cases however, functionalization is not sufficient: the particles become either coated by a corona of serum proteins or precipitate out of the solvent. In the present paper, we show that by changing the coating of iron oxide nanoparticles from a low-molecular weight ligand (citrate ions) to small carboxylated polymers (poly(acrylic acid)), the colloidal stability of the dispersion is improved and the adsorption/internalization of iron toward living mammalian cells is profoundly affected. Citrate-coated particles are shown to destabilize in all fetal-calf-serum based physiological conditions tested, whereas the polymer coated particles exhibit an outstanding dispersibility as well as a structure devoid of protein corona. The interactions between nanoparticles and human lymphoblastoid cells are investigated by transmission electron microscopy and flow cytometry. Two types of nanoparticle/cell interactions are underlined. Iron oxides are found either adsorbed on the cellular membranes, or internalized into membrane-bound endocytosis compartments. For the precipitating citrate-coated particles, the kinetics of interactions reveal a massive and rapid adsorption of iron oxide on the cell surfaces. The quantification of the partition between adsorbed and internalized iron was performed from the cytometry data. The results highlight the importance of resilient adsorbed nanomaterials at the cytoplasmic membrane.
We introduce a new set of multicoordinating polymers as ligands that combine two distinct metal-chelating groups, lipoic acid and imidazole, for the surface functionalization of QDs. These ligands combine the benefits of thiol and imidazole coordination to reduce issues of thiol oxidation and weak binding affinity of imidazole. The ligand design relies on the introduction of controllable numbers of lipoic acid and histamine anchors, along with hydrophilic moieties and reactive functionalities, onto a poly(isobutylene-alt-maleic anhydride) chain via a one-step nucleophilic addition reaction. We further demonstrate that this design is fully compatible with a novel and mild photoligation strategy to promote the in situ ligand exchange and phase transfer of hydrophobic QDs to aqueous media under borohydride-free conditions. Ligation with these polymers provides highly fluorescent QDs that exhibit great long-term colloidal stability over a wide range of conditions, including a broad pH range (3-13), storage at nanomolar concentration, under ambient conditions, in 100% growth media, and in the presence of competing agents with strong reducing property. We further show that incorporating reactive groups in the ligands permits covalent conjugation of fluorescent dye and redox-active dopamine to the QDs, producing fluorescent platforms where emission is controlled/tuned by Förster Resonance Energy Transfer (FRET) or pH-dependent charge transfer (CT) interactions. Finally, the polymer-coated QDs have been coupled to cell-penetrating peptides to facilitate intracellular uptake, while subsequent cytotoxicity tests show no apparent decrease in cell viability.
Hydrophilic functional semiconductor nanocrystals that are also compact provide greatly promising platforms for use in bioinspired applications and are thus highly needed. To address this, we designed a set of metal coordinating ligands where we combined two lipoic acid groups, bis(LA)-ZW, (as a multicoordinating anchor) with a zwitterion group for water compatibility. We further combined this ligand design with a new photoligation strategy, which relies on optical means instead of chemical reduction of the lipoic acid, to promote the transfer of CdSe-ZnS QDs to buffer media. In particular, we found that the QDs photoligated with this zwitterion-terminated bis(lipoic) acid exhibit great colloidal stability over a wide range of pHs, to an excess of electrolytes, and in the presence of growth media and reducing agents, in addition to preserving their optical and spectroscopic properties. These QDs are also stable at nanomolar concentrations and under ambient conditions (room temperature and white light exposure), a very promising property for fluorescent labeling in biology. In addition, the compact ligands permitted metal-histidine self-assembly between QDs photoligated with bis(LA)-ZW and two different His-tagged proteins, maltose binding protein and fluorescent mCherry protein. The remarkable stability of QDs capped with these multicoordinating and compact ligands over a broad range of conditions and at very small concentrations, combined with the compatibility with metal-histidine conjugation, could be very useful for a variety of applications, ranging from protein tracking and ligand-receptor binding to intracellular sensing using energy transfer interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.