RAPD assays were performed, using 34 arbitrary decamer oligonucleotide primers and six combinations of two primers, to detect inherent variations and genetic relationships among 12 Indian and 11 exotic B. juncea genotypes. Of 595 amplification products identified, 500 of them were polymorphic across all genotypes. A low level of genetic variability was detected among the Indian genotypes, while considerable polymorphism was present among the exotic ones. Based on the pair-wise comparisons of amplification products the genetic similarity was calculated using Jaccard's similarity coefficients and a dendrogram was constructed using an unweighted pair group method was arithmetical averages (UPGMA). On the basis of this analysis the genotypes were clustered into two groups, A and B. Group A comprised only exotic genotypes, whereas all the Indian genotypes and four of the exotic genotypes were clustered in group B. Almost similar genotypic rankings could also be established by computing as few as 200 amplification products. In general, a high per cent of heterosis was recorded in crosses involving Indian x exotic genotypes. On the other hand, when crosses were made amongst Indian or exotic genotypes, about 80% of them exhibited negative heterosis. Results from this study indicate that, despite the lack of direct correlation between the genetic distance and the degree of heterosis, genetic diversity forms a very useful guide not only for investigating the relationships among Brassica genotypes but also in the selection of parents for heterotic hybrid combinations.
Data on AFLP (eight primer pairs) and 14 phenotypic traits, collected on 55 elite and exotic bread wheat genotypes, were utilized for estimations of genetic diversity. We earlier used these 55 genotypes for a similar study using SSRs and SAMPL. As many as 615 scorable AFLP bands visualized included 287 (46.6%) polymorphic bands. The phenotypic traits included yield and its component traits, as well as physiomorphological traits like flag leaf area. Dendrograms were prepared using cluster analysis based on Jaccard's similarity coefficients in case of AFLP and on squared Euclidean distances in case of phenotypic traits. PCA was conducted using AFLP data and a PCA plot was prepared, which was compared with clustering patterns in two dendrograms, one each for AFLP and phenotypic traits. The results were also compared with published results that included studies conducted elsewhere using entirely different wheat germplasm and our own SSR and SAMPL studies based on the same 55 genotypes used in the present study. It was shown that molecular markers are superior to phenotypic traits and that AFLP and SAMPL are superior to other molecular markers for estimation of genetic diversity. On the basis of AFLP analysis and keeping in view the yield performance and stability, a pair of genotypes (E3876 and E677) was recommended for hybridization in order to develop superior cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.