Background: Current manual diabetic retinopathy (DR) screening using eye care experts cannot scale to screen the growing population of diabetes patients who are at risk for vision loss. EyeArt system is an automated, cloud-based artificial intelligence (AI) eye screening technology designed to easily detect referral-warranted DR immediately through automated analysis of patient's retinal images.Methods: This retrospective study assessed the diagnostic efficacy of the EyeArt system v2.0 analyzing 850,908 fundus images from 101,710 consecutive patient visits, collected from 404 primary care clinics. Presence or absence of referral-warranted DR (more than mild nonproliferative DR [NPDR]) was automatically detected by the EyeArt system for each patient encounter, and its performance was compared against a clinical reference standard of quality-assured grading by rigorously trained certified ophthalmologists and optometrists.Results: Of the 101,710 visits, 75.7% were nonreferable, 19.3% were referable to an eye care specialist, and in 5.0%, the DR level was unknown as per the clinical reference standard. EyeArt screening had 91.3% (95% confidence interval [CI]: 90.9–91.7) sensitivity and 91.1% (95% CI: 90.9–91.3) specificity. For 5446 encounters with potentially treatable DR (more than moderate NPDR and/or diabetic macular edema), the system provided a positive “refer” output to 5363 encounters achieving sensitivity of 98.5%.Conclusions: This study captures variations in real-world clinical practice and shows that an AI DR screening system can be safe and effective in the real world. This study demonstrates the value of this easy-to-use, automated tool for endocrinologists, diabetologists, and general practitioners to address the growing need for DR screening and monitoring.
IMPORTANCE Diabetic retinopathy (DR) is a leading cause of blindness in adults worldwide. Early detection and intervention can prevent blindness; however, many patients do not receive their recommended annual diabetic eye examinations, primarily owing to limited access. OBJECTIVETo evaluate the safety and accuracy of an artificial intelligence (AI) system (the EyeArt Automated DR Detection System, version 2.1.0) in detecting both more-than-mild diabetic retinopathy (mtmDR) and vision-threatening diabetic retinopathy (vtDR). DESIGN, SETTING, AND PARTICIPANTSA prospective multicenter cross-sectional diagnostic study was preregistered (NCT03112005) and conducted from April 17, 2017, to May 30, 2018. A total of 942 individuals aged 18 years or older who had diabetes gave consent to participate at 15 primary care and eye care facilities. Data analysis was performed from February 14 to July 10, 2019. INTERVENTIONS Retinal imaging for the autonomous AI system and Early Treatment DiabeticRetinopathy Study (ETDRS) reference standard determination. MAIN OUTCOMES AND MEASURESPrimary outcome measures included the sensitivity and specificity of the AI system in identifying participants' eyes with mtmDR and/or vtDR by 2-field undilated fundus photography vs a rigorous clinical reference standard comprising reading center grading of 4 wide-field dilated images using the ETDRS severity scale. Secondary outcome measures included the evaluation of imageability, dilated-if-needed analysis, enrichment correction analysis, worst-case imputation, and safety outcomes. RESULTSOf 942 consenting individuals, 893 patients (1786 eyes) met the inclusion criteria and completed the study protocol. The population included 449 men (50.3%). Mean (SD) participant age was 53.9 (15.2) years (median, 56; range, 18-88 years), 655 were White (73.3%), and 206 had type 1 diabetes (23.1%). Sensitivity and specificity of the AI system were high in detecting mtmDR
Diabetic retinopathy (DR) is a common microvascular complication of diabetes that affects nearly all the type 1 diabetes patients and >60% of type 2 diabetes patients 1 and is the leading cause of new-onset blindness and vision loss among the working-age population in the developed world, 1 with approximately 24 000 people losing vision from DR each year in the United States alone. Studies have demonstrated that early detection and treatment of DR helps reverse DR signs, and slow DR progression.2 Therefore, identification of patients in early stages of DR who are at high risk for progression to the sight-threatening stages of DR is crucial to reduce vision loss due to DR.2 Annual DR screening is the current clinical recommendation 1 for diabetic patients. However, many diabetic patients do not get annual DR screening since DR can progress over several years without symptoms or discomfort before reaching a sight-threatening stage. The CDC reports that in 2010 US eye care practitioners examined less than 63% of the estimated 23 million people with diabetes, leaving millions of people at risk for potentially preventable visual loss and blindness. Most DR screening programs use digital fundus cameras to acquire color images of the retina. Multiple photographs are obtained for each patient encounter (or a visit), and then examined for the presence of pathologies indicative of DR including microaneurysms (MAs), hemorrhages, hard exudates, cotton wool spots, intraretinal microvascular abnormalities (IRMAs), and neovascularization. Manual DR screening is time-consuming and prone to inter-and Abstract Background: Diabetic retinopathy (DR)-a common complication of diabetes-is the leading cause of vision loss among the working-age population in the western world. DR is largely asymptomatic, but if detected at early stages the progression to vision loss can be significantly slowed. With the increasing diabetic population there is an urgent need for automated DR screening and monitoring. To address this growing need, in this article we discuss an automated DR screening tool and extend it for automated estimation of microaneurysm (MA) turnover, a potential biomarker for DR risk. Methods:The DR screening tool automatically analyzes color retinal fundus images from a patient encounter for the various DR pathologies and collates the information from all the images belonging to a patient encounter to generate a patient-level screening recommendation. The MA turnover estimation tool aligns retinal images from multiple encounters of a patient, localizes MAs, and performs MA dynamics analysis to evaluate new, persistent, and disappeared lesion maps and estimate MA turnover rates. Results:The DR screening tool achieves 90% sensitivity at 63.2% specificity on a data set of 40 542 images from 5084 patient encounters obtained from the EyePACS telescreening system. On a subset of 7 longitudinal pairs the MA turnover estimation tool identifies new and disappeared MAs with 100% sensitivity and average false positives of 0.43 and 1.6 respec...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.