The aim of this study was to characterize the hydration fractions of biological tissues and to model these accurately from mixture equations. Hydration fractions, better known as volume fractions, are based on quantification of tissue hydration and accurate knowledge about the physiological composition of tissue fluids. Data on weight loss percentages for excised muscle and adipose tissue from a previous study were utilized for this purpose. The Bruggeman and Maxwell Garnett equations were then used to characterize the dielectric properties of the tissues in terms of mixtures of dry biological constituents and physiological saline solutions. It is shown that these models are accurate in modelling in vivo and ex vivo tissue in different states of hydration. This is based on precise knowledge of the physiological composition of biological fluids and their corresponding percentage contents. RECEIVED
High failure rates of cobalt-chromium-molybdenum (Co-Cr-Mo) metal-on-metal hip prosthesis were reported by various authors, probably due to the alloy's limited hardness and tribological properties. This thus caused the popularity of the alloy in metal-on-metal hip replacements to decrease due to its poor wear properties when compared with other systems such as ceramic-on-ceramic. S-phase surface engineering has become an industry standard when citing surface hardening of austenitic stainless steels. This hardening process allows the austenitic stainless steel to retain its corrosion resistance, while at the same time also improving its hardness and wear resistance. By coupling S-phase surface engineering, using the proprietary Kolsterising(®) treatment from Bodycote Hardiff GmbH, that is currently being used mainly on stainless steel, with Co-Cr-Mo alloys, an improvement in hardness and tribological characteristics is predicted. The objective of this paper is to analyze the biocompatibility of a Kolsterised(®) Co-Cr-Mo alloy, and to characterize the material surface in order to show the advantages gained by using the Kolsterised(®) material relative to the original untreated alloy, and other materials. This work has been performed on 3 fronts including; Material characterization, "In-vitro" corrosion testing, and Biological testing conforming to BS EN ISO 10993-18:2009 - Biological evaluation of medical devices. Using these techniques, the Kolsterised(®) cobalt-chromium-molybdenum alloys were found to have good biocompatibility and an augmented corrosion resistance when compared with the untreated alloy. The Kolsterised(®) samples also showed a 150% increase in surface hardness over the untreated material thus predicting better wear properties.
Current trends in the biodegradable scaffold industry call for powder metallurgy methods in which compression cannot be applied due to the nature of the scaffold template itself and the need to retain the shape of an underlying template throughout the fabrication process. Iron alloys have been shown to be good candidates for biomedical applications where load support is required. Fe–Mn alloys were researched extensively for this purpose. Current research shows that all metallurgical characterisation and corrosion test on Fe–Mn and Fe–Mn–Ag non pre-alloyed powder alloys are performed on alloys which are initially pressed into greens and subsequently sintered. In order to combine the cutting-edge field of biodegradable metallic alloys with scaffold production, metallurgical characterisation of pressed and non-pressed Fe, Fe–Mn and Fe–Mn–Ag sintered elemental powder compacts was carried out in this study. This was performed along with determination of the corrosion rate of the same alloys in in vitro mimicking solutions. These solutions were synthesised to mimic the osteo environment in which the final scaffolds are to be used.Both pressed and non-pressed alloys formed an austenite phase under the right sintering conditions. The corrosion rate of the non-pressed alloy was greater than that of its pressed counterpart. In a potentiodynamic testing scenario, addition of silver to the alloy formed a separate silver phase which galvanically increased the corrosion rate of the pressed alloy. This result wasn't replicated in the non-pressed alloys in which the corrosion rate was seen to remain similar to the non-silver-bearing alloy counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.