Amide and ester coupling reactions of ω-functionalized
monolayer-protected gold cluster molecules
(MPCs) are an exceptionally efficient avenue to a diverse variety of
polyfunctionalized MPCs starting from a
small subset of ω-functionalized materials. In this paper,
coupling reactions have been employed to produce
13 MPCs bearing multiple copies of a diverse variety of structural
groups. Detailed features of three of the
13 polyfunctionalized products are highlighted: (a)
stepwise coupling and deprotection reactions result in an
MPC surrounded by ca. eight pendant tripeptides, (b) a
preliminary Steady-State Electron Paramagnetic
Resonance (SSEPR) experiment is described for MPCs bearing multiple
spin labels (ca. 13/cluster), and (c) a
polyelectron electrochemical reaction is described for an MPC bearing
multiple (ca. 7/cluster) coupled
phenothiazine derivatives. The coupling reactions substantially
expand the available diversity of MPCs as
polyfunctionalized chemical reagents platformed on a nanometer-sized
central core.
Using a 5 ns explicit atom molecular dynamics simulation of a 60 monomer sodium dodecyl sulfate micellar system containing 7579 TIP3P water molecules, the behavior of water in different electrostatic environments was examined. Structural evaluation of the system revealed that penetration of water molecules into the micelle was restricted to the headgroup region, leaving a 12 Å water-free hydrocarbon core. Water molecules near the headgroup exhibit a distortion of the water-water hydrogen bonding network due to headgroup oxygenwater hydrogen bond formation. The dynamic implications of this distortion are manifested in the decay of the dipole autocorrelation function, Φ(t) and translational diffusion coefficient. We observe that while the translational diffusion coefficient of water molecules in the first solvation shell of the micelle is reduced by less than a half of its value in bulk water, the slow component of the reorientational correlation function is slowed by one or two orders of magnitude.
The simultaneous, concerted transfer of electrons and protonselectron-proton transfer (EPT)-is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4′-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H þ is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated þ H─B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.electron transfer | proton-coupled electron transfer P roton-coupled electron transfer (PCET), in which electrons and protons are both transferred, is at the heart of many energy conversion processes in chemistry and biology (1-6). PCET reactions can occur by sequential two-step transfers (e.g., electron transfer followed by proton transfer, ET-PT, or proton transfer followed by electron transfer, PT-ET) or by concerted electron-proton transfer (EPT) (1, 2). EPT pathways are important in avoiding high-energy intermediates, playing an integral role in photosynthesis and respiration, for example.Photo-driven EPT (photo-EPT), with electron and proton transfers occurring simultaneously during the optical excitation process, would appear to be ruled out on fundamental grounds, because electronic excitation occurs rapidly on the time scale for nuclear motions, including proton transfer. Using a combination of femtosecond pump-probe and coherent Raman techniques, we have observed simultaneous electron-proton transfer induced by intramolecular charge transfer (ICT) excitation in two different hydrogen-bonded adducts formed between an organic dye (A─O─H) and an external base (:B). One is formed between a para-nitrophenyl-phenol and an amine base, and the other between a coumarin derivative and an imidazole base (Fig. 1).The shift in electron density away from the hydroxyl group to the intramolecular ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.