We discuss the effect of heterogeneity on the chaotic properties of the Peyrard-Bishop-Dauxois nonlinear model of DNA. Results are presented for the maximum Lyapunov exponent and the deviation vector distribution. Different compositions of adenine-thymine (AT) and guanine-cytosine (GC) base pairs are examined for various energies up to the melting point of the corresponding sequence. We also consider the effect of the alternation index, which measures the heterogeneity of the DNA chain through the number of alternations between different types (AT or GC) of base pairs, on the chaotic behavior of the system. Biological gene promoter sequences have been also investigated, showing no distinct behavior of the maximum Lyapunov exponent. * Electronic address: malcolm.hillebrand@gmail.com † Electronic address: georgek@upatras.gr ‡ Electronic address: SCHADR008@myuct.ac.za § Electronic address: haris.skokos@uct.ac.za; URL: http://math_ research.uct.ac.za/~hskokos/ arXiv:1811.06689v2 [nlin.CD]
Metrics & MoreArticle Recommendations * sı Supporting Information CONSPECTUS: Enzyme reactions are complex to simulate accurately, and none more so than glycoenzymes (glycosyltransferase and glycosidases). A rigorous sampling of the protein frame and the conformationally plural carbohydrate substrate coupled with an unbiased treatment of the electron dynamics is needed to discover the true reaction landscapes. Here, we demonstrate the effectiveness of two computational methods ported in libraries that we have developed. The first is a flat histogram free energy method called FEARCF capable of multidimensional sampling and rapidly converging to a complete coverage of phase space. The second, the Quantum Supercharger Library (QSL), is a method that accelerates the computation of the ab initio electronic wave function as well as the integral derivatives on graphical processing units (GPUs). These QSL accelerated computations form the core components needed for direct quantum dynamics and QM/MM dynamics when coupled with legacy codes such as GAMESS and NWCHEM, making state of the art hyper-parallel electronic computations in chemistry and chemical biology possible. The combination of QSL (acceleration of ab initio QM computation) and FEARCF (multidimensional hyper-parallel reaction dynamics) makes the simulation of ab initio QM/MM reaction dynamics of enzyme catalysis feasible. Enzymes that process carbohydrates pose an added challenge as their pyranose ring substrates span multidimensional conformational space whose sampling is an intimate function of the catalytic mechanism. Here, we use the pairing of FEARCF and QSL to simulate the catalytic effect of the glycoenzyme β-N-acetylglucosamine transferase (OGT). The reaction mechanism is discovered from a variable three bond reaction surface using SCCDFTB. The role of the OGT in distorting the pyranose ring of β-N-acetylglucosamine (GlcNAc) away from the equilibrium 4 C 1 chair conformation toward the E 3 envelope needed for the transition state is discovered from its pucker free energy hypersurfaces (or free energy volume, FEV). A complete GlcNAc ring pucker HF 6-31g FEV is constructed from ab initio QM dynamics in vacuum and ab initio QM/MM dynamics in the OGT catalytic domain. The OGT is shown to clearly lower the pathway toward the transition state E 3 ring conformer as well as stabilize it by 1.63 kcal/mol. Illustrated here is the use of QSL accelerated ab initio QM/MM dynamics that thoroughly explores carbohydrate catalyzed reactions through a FEARCF multidimensional sampling of the interdependence between reaction and conformational space. This demonstrates how experimentally inaccessible molecular and electronic mechanisms that underpin enzyme catalysis can be discovered by directly modeling the dynamics of these complex reactions. ■ KEY REFERENCES • Naidoo, K. J. Multidimensional free energy volumes offer unique insights into reaction mechanisms, molecular conformation and association. Phys. Chem. Chem. Phys. 2012, 14, 9026−9036. 1 An overview of the FEARCF me...
Relative lifetimes of inherent double stranded DNA openings with lengths up to ten base pairs are presented for different gene promoters and corresponding mutants that either increase or decrease transcriptional activity in the framework of the Peyrard–Bishop–Dauxois model. Extensive microcanonical simulations are used with energies corresponding to physiological temperature. The bubble lifetime profiles along the DNA sequences demonstrate a significant reduction of the average lifetime at the mutation sites when the mutated promoter decreases transcription, while a corresponding enhancement of the bubble lifetime is observed in the case of mutations leading to increased transcription. The relative difference in bubble lifetimes between the mutated and wild type promoters at the position of mutation varies from 20% to more than 30% as the bubble length decreases.
We study the chaotic dynamics of graphene structures, considering both a periodic, defect free, graphene sheet and graphene nanoribbons (GNRs) of various widths. By numerically calculating the maximum Lyapunov exponent, we quantify the chaoticity for a spectrum of energies in both systems. We find that for all cases, the chaotic strength increases with the energy density and that the onset of chaos in graphene is slow, becoming evident after more than 104 natural oscillations of the system. For the GNRs, we also investigate the impact of the width and chirality (armchair or zigzag edges) on their chaotic behavior. Our results suggest that due to the free edges, the chaoticity of GNRs is stronger than the periodic graphene sheet and decreases by increasing width, tending asymptotically to the bulk value. In addition, the chaotic strength of armchair GNRs is higher than a zigzag ribbon of the same width. Furthermore, we show that the composition of 12C and 13C carbon isotopes in graphene has a minor impact on its chaotic strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.