The success of many sessile invertebrates in marine benthic communities is linked to their ability to efficiently remove suspended organic matter from the surrounding water column. To investigate the diet of the barnacle Amphibalanus eburneus, a dominant suspension feeder within the Indian River Lagoon (IRL) of central Florida, we compared the stable isotopes ratios (δ13C and δ15N) of barnacle tissue to those of particulate organic matter (POM). Collections were carried out quarterly for a year from 29 permanent sites and at sites impacted by an Aureoumbra lagunensis bloom. δ13C and δ15N values of Amphibalanus eburneus varied across sites, but δ15N was more stable over time. There was a range of δ15N values of Amphibalanus eburneus tissue from 6.0‰ to 10.5‰ across sites. Because land-based sources such as sewage are generally enriched in 15N, this suggests a continuum of anthropogenic influence across sites in the IRL. Over 70% of the variation in δ15N values of Amphibalanus eburneus across sites was driven by the δ15N values of POM, supporting a generalist feeding strategy on available sources of suspended organic matter. The dominance of this generalist consumer in the IRL may be linked to its ability to consume spatially and temporally variable food resources derived from natural and anthropogenic sources, as well as Aureoumbra lagunensis cells. Generalist consumers such as Amphibalanus eburneus serve an important ecological role in this ecosystem and act as a sentinel species and recorder of local, site-specific isotopic baselines.
In 2011, the Indian River Lagoon, a biodiverse estuary in eastern Florida (USA), experienced an intense microalgal bloom with disastrous ecological consequences. The bloom included a mix of microalgae with unresolved taxonomy and lasted for 7 months with a maximum concentration of 130 μg chlorophyll a L−1. In 2012, brown tide Aureoumbra lagunensis also bloomed in portions of this estuary, with reoccurrences in 2016 and 2018. To identify and understand the role of grazer pressure (top-down control) on bloom formation, we coupled DNA sequencing with bivalve feeding assays using three microalgae isolated from the 2011 bloom and maintained in culture. Feeding experiments were conducted on widely distributed bivalve species in the lagoon, including eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), charru mussels (Mytella charruana), green mussels (Perna viridis), Atlantic rangia (Rangia cuneata), and hard clams (Mercenaria mercenaria), which were exposed to 3 × 104 cells mL−1 of five species of microalgae consisting of A. lagunensis and the three species clarified herein, the picocyanobacteria Crocosphaera sp. and ‘Synechococcus’ sp., and the picochlorophyte Picochlorum sp., as well as Nannochloropsis oculata used as a control. To ensure clearance rates were indicative of consumption and assimilation, the microalgae were isotopically (15N) labeled prior to feeding experiments. Clearance rates differed among bivalve and microalgal species, but enriched 15N values in bivalve tissue suggest that algal bloom species were assimilated by the bivalves. These results expand our understanding of the important ecosystem services that healthy, biodiverse filter feeder communities provide.
Brown tides formed by Aureoumbra lagunensis decrease light penetration in the water column and are often followed by hypoxic events that result in the loss of fish and shellfish. To understand the ability of bivalve filter feeders to control and prevent A. lagunensis blooms, we exposed eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), and hard clams (Mercenaria mercenaria) to a naturally co-occurring brown tide in the Indian River Lagoon (IRL), Florida, United States. Bivalves were exposed in the laboratory to multiple concentrations (104 to 106 cells mL–1) of isotopically labeled (13C and 15N) A. lagunensis cells. The standard clearance rate (herein clearance rate) of each bivalve species was calculated using flow cytometry to quantify A. lagunensis cell removal. The highest clearance rates were at 104 cells mL–1, but values varied across bivalve species (2.16 ± 0.30, 3.03 ± 0.58, and 0.41 ± 0.12 L h–1 for C. virginica, I. recurvum, and M. mercenaria, respectively). Although clearance rates decreased with increasing bloom concentrations, bivalves were still consuming algal cells at all concentrations and were retaining and assimilating more cells at the highest concentrations, as revealed by δ13C and δ15N values. We highlight interspecific differences among bivalve species in the removal of A. lagunensis, supporting the importance of healthy and diverse filter feeding communities in estuaries, especially as threats of brown tides and other HABs are increasing in the Anthropocene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.