The emergence and expansion of animal life on Earth represents a dramatic shift in the structure and complexity of the biosphere. A lack of firm constraints on surface oxygen levels during the mid-Proterozoic has resulted in heated debate as to whether the rise and earliest diversification of animals was directly linked to a change in environmental oxygen levels or, instead, simply reflects the timing of innovations in gene expression and developmental regulation and was independent of a direct environmental trigger. Here, we present chromium (Cr) isotope data from marine black shales that provide evidence for minimal Cr oxidation throughout the mid-Proterozoic leading up to the diversification of eukaryotes and the rise of animals during the late Neoproterozoic. This observation requires very low background oxygen levels (<1% of present atmospheric levels). Accepting previously proposed estimates of pO 2 levels needed to induce Cr isotope fractionation, our data provide support for the persistence of an Earth system in which baseline atmospheric pO 2 would have been low enough to inhibit the diversification of animals until ca. 800 Ma. More generally, evidence for a delayed rise of atmospheric oxygen strongly suggests that environmental factors have played a fundamental role in controlling the emergence and expansion of complex life on Earth.
Shale samples were collected from outcrops that lack evidence for secondary mineralization from hydrothermal activity and weathered regions that may have experienced alteration were also avoided. Sample sets comprise several 100-200 g samples excavated 10-30 cm from the outcrop surface to target fresh material. Samples were collected along strike from a narrow stratigraphic range (<10 cm), as well as from a vertical profile (up to 5 m). The most organic-rich and least visibly-weathered samples were then chosen for digestion and isotopic
It has been hypothesized that the overall size of—or efficiency of carbon export from—the biosphere decreased at the end of the Great Oxidation Event (GOE) (ca. 2,400 to 2,050 Ma). However, the timing, tempo, and trigger for this decrease remain poorly constrained. Here we test this hypothesis by studying the isotope geochemistry of sulfate minerals from the Belcher Group, in subarctic Canada. Using insights from sulfur and barium isotope measurements, combined with radiometric ages from bracketing strata, we infer that the sulfate minerals studied here record ambient sulfate in the immediate aftermath of the GOE (ca. 2,018 Ma). These sulfate minerals captured negative triple-oxygen isotope anomalies as low as ∼ −0.8‰. Such negative values occurring shortly after the GOE require a rapid reduction in primary productivity of >80%, although even larger reductions are plausible. Given that these data imply a collapse in primary productivity rather than export efficiency, the trigger for this shift in the Earth system must reflect a change in the availability of nutrients, such as phosphorus. Cumulatively, these data highlight that Earth’s GOE is a tale of feast and famine: A geologically unprecedented reduction in the size of the biosphere occurred across the end-GOE transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.