A methodology for discovering the mechanisms and dynamics of protein clustering on solid surfaces is presented. In situ atomic force microscopy images are quantitatively compared to Monte Carlo simulations using cluster statistics to differentiate various models. We study lysozyme adsorption on mica as a model system and find that all surface-supported clusters are mobile, not just the monomers, with diffusion constant inversely related to cluster size. The surface monomer diffusion constant is measured to be D(1) approximately 9 x 10(-16) cm(2) s(-1), such a low value being difficult to measure using other techniques.
Despite its relevance to a wide range of technological and fundamental areas, a quantitative understanding of protein surface clustering dynamics is often lacking. In inorganic crystal growth, surface clustering of adatoms is well described by diffusion-aggregation models. In such models, the statistical properties of the aggregate arrays often reveal the molecular scale aggregation processes. We investigate the potential of these theories to reveal hitherto hidden facets of protein clustering by carrying out concomitant observations of lysozyme adsorption onto mica surfaces, using atomic force microscopy, and Monte Carlo simulations of cluster nucleation and growth. We find that lysozyme clusters diffuse across the substrate at a rate that varies inversely with size. This result suggests which molecular scale mechanisms are responsible for the mobility of the proteins on the substrate. In addition the surface diffusion coefficient of the monomer can also be extracted from the comparison between experiments and simulations. While concentrating on a model system of lysozyme-on-mica, this 'proof of concept' study successfully demonstrates the potential of our approach to understand and influence more biomedically applicable protein-substrate couples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.