This study introduces the design of an integrated assistive real-time system developed as an alternate input device to computers that can be used by individuals with severe motor disabilities. An assistive technology device as defined by the Assistive Technology Act of 1998 is "any item, piece of equipment, or product system, whether acquired commercially, modified, or customized, that is used to increase, maintain, or improve the functional capabilities of individuals with disabilities". The proposed real-time system design utilizes electromyographic (EMG) biosignals from cranial muscles and electroencephalographic (EEG) biosignals from the cerebrum's occipital lobe, which are transformed into controls for two-dimensional (2-D) cursor movement, the Left-Click (Enter) command, and an ON/OFF switch for the cursor-control functions. This HCI system classifies biosignals into "mouse" functions by applying amplitude thresholds and performing power spectral density (PSD) estimations on discrete windows of data, Spectral power summations are aggregated over several frequency bands between 8 and 500 Hz and then compared to produce the correct classification. The result is an affordable DSP-based system that, when combined with an on-screen keyboard, enables the user to fully operate a computer without using any extremities.
To study the neural networks reorganization in pediatric epilepsy, a consortium of imaging centers was established to collect functional imaging data. Common paradigms and similar acquisition parameters were used. We studied 122 children (64 control and 58 LRE patients) across five sites using EPI BOLD fMRI and an auditory description decision task. After normalization to the MNI atlas, activation maps generated by FSL were separated into three sub-groups using a distance method in the principal component analysis (PCA)-based decisional space. Three activation patterns were identified: (1) the typical distributed network expected for task in left inferior frontal gyrus (Broca’s) and along left superior temporal gyrus (Wernicke’s) (60 controls, 35 patients); (2) a variant left dominant pattern with greater activation in IFG, mesial left frontal lobe, and right cerebellum (three controls, 15 patients); and (3) activation in the right counterparts of the first pattern in Broca’s area (one control, eight patients). Patients were over represented in Groups 2 and 3 (P < 0.0004). There were no scanner (P = 0.4) or site effects (P = 0.6). Our data-driven method for fMRI activation pattern separation is independent of a priori notions and bias inherent in region of interest and visual analyses. In addition to the anticipated atypical right dominant activation pattern, a sub-pattern was identified that involved intensity and extent differences of activation within the distributed left hemisphere language processing network. These findings suggest a different, perhaps less efficient, cognitive strategy for LRE group to perform the task.
SIs on the LASSI-L related to PSI and frPSI uniquely differentiated Amy+ and Amy- participants with aMCI and likely reflect deficits with inhibition and source memory in preclinical AD not captured by traditional cognitive measures. This may represent a specific, noninvasive test successful at distinguishing cases with true AD from those with SNAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.