Software Process Improvement (SPI) aims to achieve quality software products in software companies. Ignoring human factors can cause several types of damage in the software development process. Because, Software development is not a purely technical task, but rather it is a relationship between technical and human factors that interact with each other constantly. Currently, Small Medium Enterprises' (SMEs) software development companies in Malaysia still struggle to implement SPI successfully. Therefore, the main objective of this study is to investigate the empirical evidence based on the human factor perspective for helping Malaysian SMEs' software development companies to implement SPI strategies. A questionnaire‐based survey method was used for gathering information from 79 practitioners. The results indicate that 9 factors (employee awareness, leadership involvement, employee involvement, customer involvement, senior management support, staff experience, staff learning, staff skills, and client support) are considered important for implementing SPI in Malaysian SME software development companies. The involvement of both leadership and employees, and getting support from management are the most important human factors that should be considered during the design process of SPI strategies.
Selecting the most suitable filter method that will produce a subset of features with the best performance remains an open problem that is known as filter rank selection problem. A viable solution to this problem is to independently apply a mixture of filter methods and evaluate the results. This study proposes novel rank aggregation-based multi-filter feature selection (FS) methods to address high dimensionality and filter rank selection problem in software defect prediction (SDP). The proposed methods combine rank lists generated by individual filter methods using rank aggregation mechanisms into a single aggregated rank list. The proposed methods aim to resolve the filter selection problem by using multiple filter methods of diverse computational characteristics to produce a dis-joint and complete feature rank list superior to individual filter rank methods. The effectiveness of the proposed method was evaluated with Decision Tree (DT) and Naïve Bayes (NB) models on defect datasets from NASA repository. From the experimental results, the proposed methods had a superior impact (positive) on prediction performances of NB and DT models than other experimented FS methods. This makes the combination of filter rank methods a viable solution to filter rank selection problem and enhancement of prediction models in SDP.
Good database design is key to high data availability and consistency in traditional databases, and numerous techniques exist to abet designers in modeling schemas appropriately. These schemas are strictly enforced by traditional database engines. However, with the emergence of schema-free databases (NoSQL) coupled with voluminous and highly diversified datasets (big data), such aid becomes even more important as schemas in NoSQL are enforced by application developers, which requires a high level of competence. Precisely, existing modeling techniques and guides used in traditional databases are insufficient for bigdata storage settings. As a synthesis, new modeling guidelines for NoSQL document-store databases are posed. These guidelines cut across both logical and physical stages of database designs. Each is developed based on solid empirical insights, yet they are prepared to be intuitive to developers and practitioners. To realize this goal, we employ an exploratory approach to the investigation of techniques, empirical methods and expert consultations. We analyze how industry experts prioritize requirements and analyze the relationships between datasets on the one hand and error prospects and awareness on the other hand. Few proprietary guidelines were extracted from a heuristic evaluation of 5 NoSQL databases. In this regard, the proposed guidelines have great potential to function as an imperative instrument of knowledge transfer from academia to NoSQL database modeling practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.