Hydrogen-grain-boundaries interactions and their role in intergranular fracture are well accepted as one of the key features in understanding hydrogen embrittlement in a large variety of common engineer situations. These interactions implicate some fundamental processes classified as segregation, trapping and diffusion of the solute which can be studied as a function of grain boundary configuration. In the present study, we carried out an extensive analysis of four grain-boundaries based on the complementary of atomistic calculations and experimental data. We demonstrate that elastic deformation has an important contribution on the segregation energy which cannot be simply reduced to a volume change and need to consider the deviatoric part of strain. Additionally, some significant configurations of the segregation energy depend on the long-range elastic distortion and allows to rationalize the elastic contribution in three terms. By investigating the different energy barriers involved to reach all the segregation sites, the antagonist impact of grain boundaries on hydrogen diffusion and trapping process was elucidated. The segregation energy and migration energy are two fundamental parameters in order to classify the grain-boundaries as a trapping location or short circuit for diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.