Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system that can perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function. Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e., human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups: normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval. Finally, a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention.
Retinopathy is an eye disease caused by diabetes, and early detection and treatment can potentially reduce the risk of blindness in diabetic retinopathy sufferers. Using retinal Fundus images, diabetic retinopathy can be diagnosed, recognized, and treated. In the current state of the art, sensitivity and specificity are lacking. However, there are still a number of problems to be solved in state-of-the-art techniques like performance, accuracy, and being able to identify DR disease effectively with greater accuracy. In this paper, we have developed a new approach based on a combination of image processing and artificial intelligence that will meet the performance criteria for the detection of disease-causing diabetes retinopathy in Fundus images. Automatic detection of diabetic retinopathy has been proposed and has been carried out in several stages. The analysis was carried out in MATLAB using software-based simulation, and the results were then compared with those of expert ophthalmologists to verify their accuracy. Different types of diabetic retinopathy are represented in the experimental evaluation, including exudates, micro-aneurysms, and retinal hemorrhages. The detection accuracies shown by the experiments are greater than 98.80 percent.
In recent years, object detection and classification has been gaining more attention, thus, there are several human object detection algorithms being used to locate and recognize human objects in images. The research of image processing and analyzing based on human shape is one of the hot topic due to the wide applicability in real applications. In this paper, we present a new object classification approach. The new approach will use a simple and robust geometrical model to classify the detected object as human or non-human in the images. In the proposed approach, the object is detected. Then the detected object under different conditions can be accurately classified (i.e. human, non-human) by combining the features that are extracted from the upper portion of the contour and the proposed geometrical model parameters. A software-based simulation using Matlab was performed using INRIA dataset and the obtained results are validated by comparing with five state-of-art approaches in literature and some of the machine learning approaches such as artificial neural networks (ANN), support vector machine (SVM), and random forest (RF). The experimental results show that the proposed object classification approach is efficient and achieved a comparable accuracy to other machine learning approaches and other state-of-art approaches.
Nowadays the security of multimedia data storage and transfer is becoming a major concern. The traditional encryption methods such as DES, AES, 3-DES, and RSA cannot be utilized for multimedia data encryption since multimedia data include an enormous quantity of redundant data, a very large size, and a high correlation of data elements. Chaos-based approaches have the necessary characteristics for dynamic multimedia data encryption. In the context of dynamical systems, chaos is extremely dependent on the initial conditions, non-convergence, non-periodicity, and exhibits a semblance of randomness. Randomness created from completely deterministic systems is a particularly appealing quality in the field of cryptography and information security. Since its inception in the early '90s, chaotic cryptography has seen a number of noteworthy changes. Throughout these years, several scientific breakthroughs have been made. This paper will give an overview of chaos-based cryptography and its most recent advances.
Alzheimer Disease (AD) is the ordinary type of dementia which does not have any proper and efficient medication. Accurate classification and detection of AD helps to diagnose AD in an earlier stage, for that purpose machine learning and deep learning techniques are used in AD detection which observers both normal and abnormal brain and accurately detect AD in an early. For accurate detection of AD, we proposed a novel approach for detecting AD using MRI images. The proposed work includes three processes such as tri-level pre-processing, swin transfer based segmentation, and multi-scale feature pyramid fusion module-based AD detection.In pre-processing, noises are removed from the MRI images using Hybrid Kuan Filter and Improved Frost Filter (HKIF) algorithm, skull stripping is performed by Geodesic Active Contour (GAC) algorithm which removes the non-brain tissues that increases detection accuracy. Here, bias field correction is performed by Expectation-Maximization (EM) algorithm which removes the intensity non-uniformity. After completed pre-processing, we initiate segmentation process using Swin Transformer based Segmentation using Modified U-Net and Generative Adversarial Network (ST-MUNet) algorithm which segments the gray matter, white matter, and cerebrospinal fluid from the brain images by considering cortical thickness, color, texture, and boundary information which increases segmentation accuracy. After that, multi-scale feature extraction is performed by Multi-Scale Feature Pyramid Fusion Module using VGG16 (MSFP-VGG16) which extract the features in multi-scale which increases the detection and classification accuracy, based on the extracted features the brain image is classified into three classes such as Alzheimer Disease (AD), Mild Cognitive Impairment, and Normal. The simulation of this research is conducted by Matlab R2020a simulation tool, and the performance of this research is evaluated by ADNI dataset in terms of accuracy, specificity, sensitivity, confusion matrix, and positive predictive value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.