Recently, numerous large-scale mumps outbreaks have occurred in vaccinated populations. Clinical isolates sequenced from these outbreaks have invariably been of genotypes distinct from those of vaccine viruses, raising concern that certain mumps virus strains may escape vaccine-induced immunity. To investigate this concern, sera obtained from children 6 weeks after receipt of measles, mumps, and rubella (MMR) vaccine were tested for the ability to neutralize a carefully selected group of genetically diverse mumps virus strains. Although the geometric mean neutralizing antibody titer of the sera was lower against some virus strains than others, all viruses were readily neutralized, arguing against immune escape.
Arcanobacterium pyogenes is an opportunistic pathogen associated with suppurative diseases in economically important food animals such as cattle, pigs, and turkeys. A. pyogenes adheres to host epithelial cells, and adhesion is promoted by the action of neuraminidase, which is expressed by this organism. However, a neuraminidase-deficient mutant of A. pyogenes only had a reduced ability to adhere to host epithelial cells, indicating that other factors are involved in adhesion. Far Western blotting revealed the presence of an approximately 120-kDa A. pyogenes cell wall protein that binds collagen type I. The 3.5-kb gene that encodes the 124.7-kDa CbpA protein was cloned, and sequence analysis indicated that CbpA contains a typical MSCRAMM protein domain structure. Recombinant, six-His-tagged CbpA (HIS-CbpA) was capable of binding collagen types I, II, and IV but not fibronectin. In addition, CbpA was involved in the ability of A. pyogenes to adhere to HeLa and 3T6 cells, as a cbpA knockout strain had 38.2 and 57.0% of wild-type adhesion, respectively. This defect could be complemented by providing cbpA on a multicopy plasmid. Furthermore, HIS-CbpA blocked A. pyogenes adhesion to HeLa or 3T6 cells in a dose-dependent manner. cbpA was only present in 48% of the A. pyogenes strains tested (n ؍ 75), and introduction of plasmid-encoded cbpA into a naturally cbpA-deficient strain increased the ability of this strain to bind to HeLa and 3T6 cells 2.9-and 5.7-fold, respectively. These data indicate that CbpA, a collagen-binding protein of A. pyogenes, plays a role in the adhesion of this organism to host cells.
Many acyclovir-resistant herpes simplex virus isolates from patients contain insertions or deletions in homopolymeric sequences in the thymidine kinase (TK) gene (tk). Viruses that have one (G8) or two (G9) base insertions in a run of seven G's (G string) synthesize low levels of active TK (TK-low phenotype), evidently via ribosomal frameshifting. These levels of TK can suffice to permit reactivation from latently infected mouse ganglia, but in a majority of ganglia, especially with the G9 virus, reactivation of virus that has reverted to the TK-positive phenotype predominates. To help address the relative contributions of translational mechanisms and reversion in reactivation, we generated viruses with a base either inserted or deleted just downstream of the G string. Both of these viruses had a TK-low phenotype similar to that of the G8 and G9 viruses but with less reversion. Both of these viruses reactivated from latently infected trigeminal ganglia, albeit inefficiently, and most viruses that reactivated had a uniformly TK-low phenotype. We also generated viruses that have one insertion in a run of six C's or one deletion in a run of five C's. These viruses lack measurable TK activity. However, they reactivated from latently infected ganglia, albeit inefficiently, with the reactivating viruses having reverted to the wild-type TK phenotype. Therefore, for G-string mutants, levels of active TK as low as 0.25% generated by translational mechanisms can suffice for reactivation, but reversion can also contribute. For viruses that lack TK activity due to mutations on other homopolymeric sequences, reactivation can occur via reversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.