The past decade has seen the publication of a large number of cell-cycle microarray studies and many more are in the pipeline. However, data from these experiments are not easy to access, combine and evaluate. We have developed a centralized database with an easy-to-use interface, Cyclebase.org, for viewing and downloading these data. The user interface facilitates searches for genes of interest as well as downloads of genome-wide results. Individual genes are displayed with graphs of expression profiles throughout the cell cycle from all available experiments. These expression profiles are normalized to a common timescale to enable inspection of the combined experimental evidence. Furthermore, state-of-the-art computational analyses provide key information on both individual experiments and combined datasets such as whether or not a gene is periodically expressed and, if so, the time of peak expression. Cyclebase is available at http://www.cyclebase.org.
Traditionally, T cell epitope discovery requires considerable amounts of tedious, slow, and costly experimental work. During the last decade, prediction tools have emerged as essential tools allowing researchers to select a manageable list of epitope candidates to test from a larger peptide, protein, or even proteome. However, no current tools address the complexity caused by the highly polymorphic nature of the restricting HLA molecules, which effectively individualizes T cell responses. To fill this gap, we here present an easy-to-use prediction tool named HLArestrictor ( http://www.cbs.dtu.dk/services/HLArestrictor ), which is based on the highly versatile and accurate NetMHCpan predictor, which here has been optimized for the identification of both the MHC restriction element and the corresponding minimal epitope of a T cell response in a given individual. As input, it requires high-resolution (i.e., 4-digit) HLA typing of the individual. HLArestrictor then predicts all 8-11mer peptide binders within one or more larger peptides and provides an overview of the predicted HLA restrictions and minimal epitopes. The method was tested on a large dataset of HIV IFNγ ELIspot peptide responses and was shown to identify HLA restrictions and minimal epitopes for about 90% of the positive peptide/patient pairs while rejecting more than 95% of the negative peptide-HLA pairs. Furthermore, for 18 peptide/HLA tetramer validated responses, HLArestrictor in all cases predicted both the HLA restriction element and minimal epitope. Thus, HLArestrictor should be a valuable tool in any T cell epitope discovery process aimed at identifying new epitopes from infectious diseases and other disease models.
The transcription factor OCT4 plays a crucial role in the earliest differentiation of the mammalian embryo and in self-renewal of embryonic stem cells. However, it remains controversial whether this gene is also expressed in somatic tissues. Here, we use a combination of RT-PCR on whole and microdissected tissues, in situ hybridization, immunohistochemistry and western blotting to show that OCT4 and SOX2 together with downstream targets, UTF1 and REX1/ZFP42, are expressed in the human male urogenital tract. We further support these results by the analysis of DNA methylation of a region in the OCT4 promoter. In culture, human primary epididymal cells formed spheres that continued to express the investigated genes for at least 20 days. Transcriptomic analysis of cultured cells showed up-regulation of CD29, CD44 and CD133 that are normally associated with sphere-forming cancer stem cells. Furthermore, stimulation with retinoic acid resulted in down-regulation of OCT4 expression, however, without multilineage differentiation. Our results show that OCT4 and associated genes are expressed in somatic epithelial cells from the urogenital tract and that these cells can form spheres, a general marker of stem cell behaviour.
Silencing of MIG1, a transcription factor imposing carbon catabolite repression on invertase, was attempted, either by disrupting the gene or by expressing antisense copies of the gene. The performance of the recombinant strains in bioreactor batch cultivations on sucrose, in the presence of glucose, was compared with that of the wild-type strain under the same conditions. In the ⌬mig1 strain, the rate of sucrose utilization was independent (10 mmol/g/h) of the glucose concentration. During the cultivations with the wild-type strain and the antisense strains, two distinct phases were observed. The rates of sucrose hydrolysis were <1 mmol/g/h and 9 to 10 mmol/g/h in the first and second phases, respectively. Entry into the second cultivation phase was characterized by a decline in glucose concentration below 12 mmol/liter. As expected, disruption of MIG1 resulted in a relief of glucose repression. However, silencing of MIG1 expression was not achieved by expressing antisense MIG1, even though antisense MIG1 RNA was sufficiently stable to be detected. In the wild-type and ⌬mig1 strains, the specific growth rate was 0.32 to 0.33 h ؊1 , whereas it was lower in the antisense strains, 0.25 to 0.30 h ؊1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.