Hydrophobicity is a phenomenon of
great importance in biology,
chemistry, and biochemistry. It is defined as the interaction between
nonpolar molecules or groups in water and their low solubility. Hydrophobic
interactions affect many processes in water, for example, complexation,
surfactant aggregation, and coagulation. These interactions play a
pivotal role in the formation and stability of proteins or biological
membranes. In the present study, we assessed the effect of ionic strength,
solute size, and shape on hydrophobic interactions between pairs of
nonpolar particles. Pairs of methane, neopentane, adamantane, fullerene,
ethane, propane, butane, hexane, octane, and decane were simulated
by molecular dynamics in AMBER 16.0 force field. As a solvent, TIP3P
and TIP4PEW water models were used. Potential of mean force (PMF)
plots of these dimers were determined at four values of ionic strength,
0, 0.04, 0.08, and 0.40 mol/dm
3
, to observe its impact
on hydrophobic interactions. The characteristic shape of PMFs with
three extrema (contact minimum, solvent-separated minimum, and desolvation
maximum) was observed for most of the compounds for hydrophobic interactions.
Ionic strength affected hydrophobic interactions. We observed a tendency
to deepen contact minima with an increase in ionic strength value
in the case of spherical and spheroidal molecules. Additionally, two-dimensional
distribution functions describing water density and average number
of hydrogen bonds between water molecules were calculated in both
water models for adamantane and hexane. It was observed that the density
of water did not significantly change with the increase in ionic strength,
but the average number of hydrogen bonds changed. The latter tendency
strongly depends on the water model used for simulations.