Hardly anything is known about translational control of plant mitochondrial gene expression. Here, we provide evidence for differential translation of mitochondrial transcripts in Arabidopsis thaliana. We found that silencing of the nuclear RPS10 gene encoding mitochondrial ribosomal protein S10 disturbs the ratio between the small and large subunits of mitoribosomes, with an excess of the latter. Moreover, a portion of the small subunits are incomplete, lacking at least the S10 protein. rps10 cells also have an increased mitochondrial DNA copy number per cell, causing an upregulation of all mitochondrial transcripts. Mitochondrial translation is also altered so that it largely overrides the hyperaccumulation of transcripts, and as a consequence, only ribosomal proteins are oversynthesized, whereas oxidative phosphorylation subunits are downregulated. Expression of nuclear-encoded components of mitoribosomes and oxidative phosphorylation system (OXPHOS) complexes seems to be less affected. The ultimate coordination of expression of the nuclear and mitochondrial genomes occurs at the complex assembly level. These findings indicate that mitoribosomes can regulate gene expression by varying the efficiency of translation of mRNAs for OXPHOS and ribosomal proteins.
FTSH4 is one of the inner membrane-embedded ATP-dependent metalloproteases in mitochondria of Arabidopsis (Arabidopsis thaliana). In mutants impaired to express FTSH4, carbonylated proteins accumulated and leaf morphology was altered when grown under a short-day photoperiod, at 22°C, and a long-day photoperiod, at 30°C. To provide better insight into the function of FTSH4, we compared the mitochondrial proteomes and oxyproteomes of two ftsh4 mutants and wild-type plants grown under conditions inducing the phenotypic alterations. Numerous proteins from various submitochondrial compartments were observed to be carbonylated in the ftsh4 mutants, indicating a widespread oxidative stress. One of the reasons for the accumulation of carbonylated proteins in ftsh4 was the limited ATP-dependent proteolytic capacity of ftsh4 mitochondria, arising from insufficient ATP amount, probably as a result of an impaired oxidative phosphorylation (OXPHOS), especially complex V. In ftsh4, we further observed giant, spherical mitochondria coexisting among normal ones. Both effects, the increased number of abnormal mitochondria and the decreased stability/activity of the OXPHOS complexes, were probably caused by the lower amount of the mitochondrial membrane phospholipid cardiolipin. We postulate that the reduced cardiolipin content in ftsh4 mitochondria leads to perturbations within the OXPHOS complexes, generating more reactive oxygen species and less ATP, and to the deregulation of mitochondrial dynamics, causing in consequence the accumulation of oxidative damage.
Mitochondria of amoeba Acanthamoeba castellanii were used to determine the role of two energy-dissipating systems, i.e., a free fatty acid (FFA)-activated, purine nucleotideinhibited uncoupling protein (AcUCP) and a FFA-insensitive, purine nucleotide-activated ubiquinol alternative oxidase (AcAOX), in decreasing reactive oxygen species production in unicellular organisms. It is shown that the activation of AcUCP by externally added FFA resulted in a strong decrease in H 2 O 2 production, whilst the inhibition of the FFA acid-induced AcUCP activity by GDP or addition of bovine serum albumin (BSA) enhanced production of H 2 O 2 . Similarly, the activation of antimycin-resistant AcAOX-mediated respiration by GMP significantly lowered H 2 O 2 production, while inhibition of the oxidase by benzohydroxamate cancelled the GMP-induced effect on H 2 O 2 production. When active together, both energy-dissipating systems revealed a cumulative effect on decreasing H 2 O 2 formation. The results suggest that protection against mitochondrial oxidative stress may be a physiological role of AOX and UCP in unicellulars, such as A. castellanii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.