IntroductionWhile the asymmetry of body posture and the asymmetrical nature of hemiparetic gait in poststroke (PS) patients are well documented, the role of weight shift asymmetry in gait disorders after stroke remains unclear.ObjectiveWe examined the association of weight-bearing asymmetry (WBA) between paretic and nonparetic lower limbs during quiet standing with the degree of deviation of hemiplegic gait from normal gait evaluated by the Gillette Gait Index (GGI) incorporating 16 distinct clinically important kinematic and temporal parameters in chronic PS patients.Participants and methodsTwenty-two ambulatory patients with chronic stroke aged between 50 and 75 years were included in this study. Fourteen patients had hemiparesis on the nondominant side and 8 on the dominant side. The mean time PS was 2 years and 6 months. The reference group consisted of 22 students from the University of the Third Age presenting no neurological disorders. The examination consisted of posturographic weight-bearing (WB) distribution and 3-dimensional gait analyses.ResultsA significant positive relationship between WBA and GGI was revealed. Moreover, we observed a significant negative association between WBA and paretic step length and walking speed. With regard to kinematic data, the range of motion of knee flexion and peak dorsiflexion in the swing phase of the paretic leg were significantly negatively associated with WBA.ConclusionAlthough further research is needed to determine a causal link between postural control asymmetry and gait disturbance in hemiplegics, our findings support the inclusion of WB measurements between paretic and nonparetic body sides in early assessment after stroke.
BackgroundSeveral different strategies for maintaining upright standing posture in children with cerebral palsy (CP) were observed.PurposeThe purpose of the present study was to define two different postural patterns in children with unilateral CP, using moiré topography (MT) parameters. Additionally, another focus of this article was to outline some implications for managing physiotherapy in children with hemiplegia.Patients and methodsThe study included 45 outpatients with unilateral CP. MT examinations were performed using a CQ Elektronik System device. In addition, a weight distribution analysis on the base of support between unaffected and affected body sides was performed simultaneously. A force plate pressure distribution measurement system (PDM-S) with Foot Print software was used for these measurements.ResultsThe cluster analysis revealed four groups: cluster 1 (n=19; 42.22%); cluster 2 (n=7; 15.56%); cluster 3 (n=9; 20.00%); and cluster 4 (n=10; 22.22%).ConclusionBased on the MT parameters (extracted using a data reduction technique), two postural patterns were described: 1) the pro-gravitational postural pattern; and 2) the anti-gravitational pattern.
BackgroundDevelopment of a reliable and objective test of spasticity is important for assessment and treatment of children with cerebral palsy. The pendulum test has been reported to yield reliable measurements of spasticity and to be sensitive to variations in spasticity in these children. However, the relationship between the pendulum test scores and other objective measures of spasticity has not been studied. The present study aimed to assess the effectiveness of an accelerometer-based pendulum test as a measurement of spasticity in CP, and to explore the correlation between the measurements of this test and the global index of deviation from normal gait in in children with cerebral palsy.MethodsWe studied thirty-six children with cerebral palsy, including 18 with spastic hemiplegia and 18 with spastic diplegia, and a group of 18 typically-developing children. Knee extensor spasticity was assessed bilaterally using the accelerometer-based pendulum test and three-dimensional gait analysis. The Gillette Gait Index was calculated from the results of the gait analysis.ResultsThe data from the accelerometer-based pendulum test could be used to distinguish between able-bodied children and children with cerebral palsy. Additionally, two of the measurements, first swing excursion and relaxation index, could be used to differentiate the degree of knee extensor spasticity in the children with cerebral palsy. Only a few moderate correlations were found between the Gillette Gait Index and the pendulum test data.ConclusionsThis study demonstrates that the pendulum test can be used to discriminate between typically developing children and children with CP, as well as between various degrees of spasticity, such as spastic hemiplegia and spastic diplegia, in the knee extensor muscle of children with CP. Deviations from normal gait in children with CP were not correlated with the results of the pendulum test.Electronic supplementary materialThe online version of this article (doi:10.1186/1743-0003-11-166) contains supplementary material, which is available to authorized users.
Patients with unilateral cerebral palsy (CP) often have impaired movement coordination, reduced between-limb synchronization, and less weight bearing on the affected side, which can affect the maintenance of an upright weight-bearing position and gait. This study evaluated whether the different postural patterns of children with unilateral CP could be statistically recognized using cluster analysis. Forty-five outpatients with unilateral CP (mean age, 9 years and 5 months) and 51 able-bodied children with mild scoliosis (mean age, 9 years and 2 months) were included. One observer performed moiré topography (MT) examinations using a CQ Electronic System (Poland) device. A weight distribution analysis on the base of support (BOS) between the body sides was performed simultaneously. A force plate dynamographic platform (PDM), ZEBRIS (Germany), with FootPrint software was used for these measurements. Cluster analysis revealed three groups: Cluster 1 (n = 71, 73.96%), Cluster 2 (n = 8, 8.33%), and Cluster 3 (n = 17, 17.71%). Based on the MT parameters (extracted using a data reduction technique), three typical asymmetrical postural patterns were described: (1) the postural pattern of children with mild scoliosis (SCOL), (2) the progravitational postural pattern (PGPP), and (3) the antigravitational pattern. Patterns two and three were identified in children with unilateral CP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.