This article describes the use of recycled glass sand in the production of autoclaved products. Traditional autoclaved bricks consist of crystalline sand, lime and water. The conducted research aimed at the complete elimination of quartz sand in favor of glass sand. This work focuses on porosity as the functional property of the materials. The aim of this article is to determine the number and structure of the pores of autoclaved bricks. Two types of research were carried out: (a) non-destructive, i.e., computed tomography examination as a pictorial and quantitative method and (b) mercury porosimetry as a quantitative method, i.e., a test that exposes the porous skeleton of the material for destruction. The tests showed the presence of pores with a size in the range of 0.1 ÷ 100 μm, and the volume of voids in the material was determined at the level of about 20% for the sample modified with glass sand (GS) and for the reference sample made of traditional silicate brick. In order to complete the research on the internal structure of autoclaved bricks, microstructure studies were performed using a scanning electron microscope (SEM). The tests showed the presence of tobermorite in the reference sample (with 90% QS-quartz sand) and the presence of natrolite and gyrolite in the sample modified by glass sand (90% GS).
The work has investigated the actual mechanism of the adhesion between successive asphalt layers, taking into account the macrostructure of the pavement layers, which are made of heterogeneous materials. The interaction between the joined layers was determined by applying a cohesion contact model. The parameters of the model were identified using the results obtained in the course of the actual Leutner tests. The heterogeneity of the structure was mapped based on a digital image of a tomographic cross-section. The separation of the materials included in the individual layers was performed with the use of a script in the MatLab program. Thanks to this, the batch file for the Abaqus program was prepared thoroughly. As a result, it was possible to map as closely as possible the profile of the deformation caused by the loss of the interlayer adhesion. Based on the data analysis, it was found that in the layer of the base course constructed from cold-applied recycled materials, the loss of interlayer adhesion is related to the state of non-linear mastic deformation. As a consequence, it was found that large deformations in the mastic structure would cause losses of aggregate grains in the recycled layer. In addition, a large horizontal displacement within the layer of the base course made of recycled material is one of the likely causes of edge fractures in the road structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.