Botulinum neurotoxin type-A (BoNT-A) blocks the release of acetylcholine from peripheral cholinergic nerve terminals and is an important option for the treatment of disorders characterised by excessive cholinergic neuronal activity. Several BoNT-A products are currently marketed, each with unique manufacturing processes, excipients, formulation, and non-interchangeable potency units. Nevertheless, the effects of all the products are mediated by the 150 kDa BoNT-A neurotoxin. We assessed the quantity and light chain (LC) activity of BoNT-A in three commercial BoNT-A products (Dysport®; Botox®; Xeomin®). We quantified 150 kDa BoNT-A by sandwich ELISA and assessed LC activity by EndoPep assay. In both assays, we assessed the results for the commercial products against recombinant 150 kDa BoNT-A. The mean 150 kDa BoNT-A content per vial measured by ELISA was 2.69 ng/500 U vial Dysport®, 0.90 ng/100 U vial Botox®, and 0.40 ng/100 U vial Xeomin®. To present clinically relevant results, we calculated the 150 kDa BoNT-A/US Food and Drug Administration (FDA)-approved dose in adult upper limb spasticity: 5.38 ng Dysport® (1000 U; 2 × 500 U vials), 3.60 ng Botox® (400 U; 4 × 100 U vials), and 1.61 ng Xeomin® (400 U; 4 × 100 U vials). EndoPep assay showed similar LC activity among BoNT-A products. Thus, greater amounts of active neurotoxin are injected with Dysport®, at FDA-approved doses, than with other products. This fact might explain the long duration of action reported across multiple indications, which benefits patients, caregivers, clinicians, and healthcare systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.