indoor air quality office buildings bacterial and fungal aerosols size distribution
Biodeterioration of heritage collections caused by microorganisms is a worldwide problem. To avoid degradation caused by biological contaminants transported into the indoor environment by air, proper bioaerosol protection is required. The aim of this study was to assess the level of microbial contamination of the Auschwitz-Birkenau Museum collection based on qualitative and quantitative analyses of bacteria and fungi isolated from the atmosphere and settled dust of museum storerooms. The obtained results demonstrated that a correctly operated air-conditioning system and limiting the number of visitors in the studied storerooms can significantly inhibit microbial contamination of the air and decrease deposition of bacterial and fungal particulates on exhibit surfaces. The performed analyses confirm that an aerobiological assessment of museum premises is a useful tool in their hygienic evaluation and, if necessary, in decision-making regarding interventions to minimize biological decay of collections.
PurposeThe objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP).MethodsSamples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis.ResultsThe average concentration of anaerobic bacteria in the sewage samples was 5.49 × 104 CFU/mL (GSD = 85.4) and in sludge—1.42 × 106 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 103 CFU/m3) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified.ConclusionsAnaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.
Proper hygienic conditions in office buildings are of a high importance for both health and well-being of the employees. The aim of this study was the direct comparison of different ventilation systems on microbiological environments in 15 office buildings. The results showed that both bacterial and fungal concentrations in the naturally ventilated office buildings were between 70 and 1600 cfu/m , while in the offices equipped with air-conditioning and mechanical ventilation systems, concentrations were lower, that is, between 10 and 530 cfu/m and 20 and 410 cfu/m , respectively. The size distribution analysis revealed that microorganisms were present in the air mainly as single cells (1.1-3.3 μm) and large aggregates (4.7->7 μm). If deposited in the human respiratory tract, they may be responsible for nose and eyes irritations, asthmatic reactions, and allergic inflammations. The most prevalent bacterial species indoors were Gram-positive cocci (mainly from Staphylococcus and Micrococcus/Kocuria genera) and endospore-forming Gram-positive rods (from Bacillus genus). Among the most common fungal species were those from genera Penicillium, Aspergillus, and Cladosporium. Effectively working and regularly maintained mechanical ventilation or air-conditioning systems ensure a better hygienic quality in the office buildings than natural/gravitational ventilation.
Objectives: To date, the scientific source materials usually focus on microbial contamination of the museum or library collections themselves, while the exposure of persons who professionally deal with this type of objects in cultural heritage conservation laboratories is ignored. Material and Methods: The study was carried out in 9 naturally ventilated conservation laboratories with no history of water damage. Viable (understood as culturable) bioaerosol stationary samples were collected in both outdoor and indoor environments using 6-stage Andersen impactor. Simultaneously, stationary and personal indoor bioaerosol measurements were carried out using both Gesamtstaubprobenahme an der Person (GSP) and Button filter samplers. These measurements were complemented by evaluation of microbial content in the dust settled on conserved works of art. All impactor, filter, and settled dust samples were quantitatively examined to obtain viable and total concentrations of bacteria and fungi. All isolated microbial strains were taxonomically identified. Results: At workplaces, the concentrations of viable microorganisms in air were below 2000 cfu/m 3 and accounted for not more than 5.5% of total microbiota. The study showed that quantitative assessment of viable bioaerosol can be made with an Andersen impactor as well as by using Button and GSP filter samplers, irrespective of whether they are applied for personal or stationary measurements. Compared to the impactor, however, the use of filter samplers for microbial contamination monitoring substantially limits the scope of qualitative information which can be obtained. Size distribution analysis revealed that the largest "load" of microorganisms can penetrate into the respiratory tract between the trachea and terminal bronchi, and thereby may be responsible for allergic inflammations in exposed workers. Conclusions: The precise assessment of microbial hazards in conservation laboratories should comprise control of both viable and total particle counts. The hermetization of such workplaces and control of relative humidity should be implemented and maintained to assure proper hygienic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.