observed. It was mainly due to the developments in biological studies, the change of a population lifestyle and the increase in the consumer awareness concerning food products. The health quality of food depends mainly on nutrients, but also on foreign substances such as food additives. The presence of foreign substances in the food can be justified, allowed or tolerated only when they are harmless to our health. Epidemic obesity and diabetes encouraged the growth of the artificial sweetener industry. There are more and more people who are trying to lose weight or keeping the weight off; therefore, sweeteners can be now found in almost all food products. There are two main types of sweeteners, i.e., nutritive and artificial ones. The latter does not provide calories and will not influence blood glucose; however, some of nutritive sweeteners such as sugar alcohols also characterize with lower blood glucose response and can be metabolized without insulin, being at the same time natural compounds. Sugar alcohols (polyols or polyhydric alcohols) are low digestible carbohydrates, which are obtained by substituting and aldehyde group with a hydroxyl one [1,2]. As most of sugar alcohols are produced from their corresponding aldose sugars, they are also called alditols [3]. Among sugar alcohols can be listed hydrogenated monosaccharides (sorbitol, mannitol), hydrogenated disaccharides (isomalt, maltitol, lactitol) and mixtures of hydrogenated mono-diand/or oligosaccharides (hydrogenated starch hydrolysates) [1,2,4].Polyols are naturally present in smaller quantities in fruits as well as in certain kinds of vegetables or mushrooms, and they are also regulated as either generally recognized as safe or food additives [5][6][7]. Food additives are substances that are added intentionally to foodstuffs in order to perform certain technological functions such as to give color, to sweeten or to help in food preservation.Abstract Epidemic obesity and diabetes encouraged the changes in population lifestyle and consumers' food products awareness. Food industry has responded people's demand by producing a number of energy-reduced products with sugar alcohols as sweeteners. These compounds are usually produced by a catalytic hydrogenation of carbohydrates, but they can be also found in nature in fruits, vegetables or mushrooms as well as in human organism. Due to their properties, sugar alcohols are widely used in food, beverage, confectionery and pharmaceutical industries throughout the world. They have found use as bulk sweeteners that promote dental health and exert prebiotic effect. They are added to foods as alternative sweeteners what might be helpful in the control of calories intake. Consumption of low-calorie foods by the worldwide population has dramatically increased, as well as health concerns associated with the consequent high intake of sweeteners. This review deals with the role of commonly used sugar alcohols such as erythritol, isomalt, lactitol, maltitol, mannitol, sorbitol and xylitol as sugar substitutes in food ...
The present study measured the concentrations of toxic metals (Cd, Pb) and other elements (Ca, K, Mg, Na, P, Mn, Fe, Zn, Cu, Co, Cr, Ni) in tea leaves and their infusions. The total metal contents were determined by atomic absorption spectrometry. Phosphorus concentration was determined using an ultraviolet–visible spectrophotometer. Assessment of the mineral composition enabled determination of the leaching percentage and the risk of exceeding provisional tolerable weekly intake for Cd through daily tea consumption. The concentrations of bioelements were analyzed based on the recommended daily intake values for each. According to recently established standards, green tea was found to be a rich source of Mn. The average Pb and Cd levels in a 200-mL beverage were 0.002 and 0.003 mg, respectively. Indian teas had the highest percentage of Cd leaching (43.8 %) and Chinese tea had the lowest (9.41 %). Multivariate analysis techniques such as factor analysis and cluster analysis were used to differentiate samples according to geographical origin (China, India, or Japan). Potassium, P, Mn, Fe, Cu, Co, and Cd were effective descriptors for the identification of tea samples from China, India, and Japan.
The aim of this investigation was to estimate and compare essential and heavy metals contents in 98 commercially available fresh fruits from different geographic regions using multivariate techniques. The concentrations of 12 elements (calcium, magnesium, potassium, sodium, phophorus, cobalt (Co), manganese, iron, chromium (Cr), nickel (Ni), zinc and copper) were determined using flame atomic absorption spectrometry with deuterium-background correction. Phosphorus was determined in the form of phosphomolybdate by a spectrophotometric method. Reliability of the procedure was checked by analysis of the certified reference materials tea (NCS DC 73351), cabbage (IAEA-359) and spinach leaves (NIST-1570). Recoveries of the elements analysed varied between 85.5 and 103 %, and precisions for the reference materials were 0.13–6.08 %. Based on recommended dietary allowance and adequate intake estimated for essential elements, it was concluded that accessory fruits such as pineapples, raspberries and strawberries supply organism with the highest amounts of bioelements. Although accessory fruits were also found to be the greatest source of Ni among all the analysed fruits, in all the fruits Ni was more abundant than Cr and Co. Significant correlation coefficients (p < 0.001, p < 0.01 and p < 0.05) were found between concentrations of some metals in fresh fruits. Application of ANOVA Kruskal–Wallis test and multivariate techniques such as factor analysis and cluster analysis enabled us to differentiate particular botanical families and types of fruits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.