Nanotechnology is a dynamically developing field of scientific and industrial interest across the entire world, and the commercialization of nanoparticles (NPs) is rapidly expanding. Incorporation of nanotechnologies into a range of manufactured goods results in increasing concern regarding the subsequent release of engineered NPs into the environment. One of the biggest threats of using NPs is the transfer and magnification of these particles in the trophic chain. The aim of the studies was the evaluation of the distribution of TiO2 NP contamination in the aquatic ecosystem under laboratory conditions. Bioaccumulation of TiO2 NPs by plants (Elodea canadensis) and fish (Danio rerio) in the source of contamination was investigated. The studies were focused on the consequences of short-term water contamination with TiO2 NPs and the secondary contamination of the components of the investigated model ecosystem (plants, sediments). It was found that in the fish and the plants exposed to NP contamination, the amount of Ti was higher than in the control, indicating an effective bioaccumulation of NPs or ions originating from NPs. It was clearly shown that the NPs present in the sediments are available to plants and fish. Additionally, the aquatic plants, an important trophic level in the food chain, can accumulate NPs and be a source of NPs for higher organisms. It was concluded that even an incidental contamination of water by NPs may result in long-term consequences induced by the release of NPs.
Abstract. Water environments are noted as being some of the most exposed to the infl uence of toxic nanoparticles (NPs). Therefore, there is a growing need for the investigation of the accumulation and toxicity of NPs to aquatic organisms. In our studies neutron activation followed by gamma spectrometry and liquid scintillation counting were used for studying the accumulation of silver nanoparticles (AgNPs) by freshwater larvae of Chironomus and fi sh Danio rerio. The infl uence of exposition time, concentration and the source of nanoparticles on the effi ciency of AgNP accumulation were studied. It was found that AgNPs are effi ciently accumulated by Chironomid larvae for the fi rst 30 hours of exposition; then, the amount of silver nanoparticles decreases. The silver content in larvae increases together with the NP concentration in water. Larvae which have accumulated AgNPs can be a source of nanoparticles for fi sh and certainly higher levels of Ag in the trophic chain. In comparison with water contamination, silver nanoparticles are more effi ciently accumulated if fi sh are fed with AgNP-contaminated food. Finally, it was concluded that the applied study strategy, including neutron activation of nanoparticles, is very useful technique for tracing the uptake and accumulation of NPs in organisms.
Nanoparticles (NPs) could reach the food chain from diverse wastes containing these potentially toxic substances. We studied the mycoextraction of alumina (Al 2 O 3 ) NPs by mycelia of edible fungi: Pleurotus eryngii and Trametes versicolor. Mycelia were cultivated in liquid medium supplemented with alumina nanoparticles (concentrations 0.) to investigate accumulation of metal in the mycelium. The accumulation of Al in the mycelium depended on the duration of exposure, biomass of the mycelium and concentration of NPs. The efficiency of alumina-NP removal from the medium depended only on the duration of exposure and the fungal biomass, but not on NP concentration. Live hyphae of P. eryngii were more efficient in the removal of the NPs (∼86 % of total amount of NPs removed from medium) than T. versicolor (61 %). Dead mycelium of P. eryngii was less efficient (51 %), but also useful in the mycoextraction. These results were confirmed by scanning and transmission electron microscopy and laser ablation inductively coupled plasma mass spectrometry. Additionally, it was found that the mycoextraction efficiency by P. eryngii depended on NP type and was lower for NPs other than alumina: platinum -58 % and cobalt -13 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.