The permeation of the blood-brain barrier is a very important consideration for new drug candidate molecules. In this research, the reversed-phase liquid chromatography with different columns (Purosphere RP-18e, IAM.PC.DD2 and Cosmosil Cholester) was used to predict the penetration of the blood-brain barrier by 65 newly-synthesized drug-like compounds. The linear free energy relationships (LFERs) model (log BB = c + eE + sS + aA + bB + vV) was established for a training set of 23 congeneric biologically active azole compounds with known experimental log BB (BB = Cblood/Cbrain) values (R2 = 0.9039). The reliability and predictive potency of the model were confirmed by leave-one-out cross validation as well as leave-50%-out cross validation. Multiple linear regression (MLR) was used to develop the quantitative structure-activity relationships (QSARs) to predict the log BB values of compounds that were tested, taking into account the chromatographic lipophilicity (log kw), polarizability and topological polar surface area. The excellent statistics of the developed MLR equations (R2 > 0.8 for all columns) showed that it is possible to use the HPLC technique and retention data to produce reliable blood-brain barrier permeability models and to predict the log BB values of our pharmaceutically important molecules.
The Quantitative Structure-Activity Relationship (QSAR) methodology was used to predict biological properties, i.e., the blood–brain distribution (log BB), fraction unbounded in the brain (fu,brain), water-skin permeation (log Kp), binding to human plasma proteins (log Ka,HSA), and intestinal permeability (Caco-2), for three classes of fused azaisocytosine-containing congeners that were considered and tested as promising drug candidates. The compounds were characterized by lipophilic, structural, and electronic descriptors, i.e., chromatographic retention, topological polar surface area, polarizability, and molecular weight. Different reversed-phase liquid chromatography techniques were used to determine the chromatographic lipophilicity of the compounds that were tested, i.e., micellar liquid chromatography (MLC) with the ODS-2 column and polyoxyethylene lauryl ether (Brij 35) as the effluent component, an immobilized artificial membrane (IAM) chromatography with phosphatidylcholine column (IAM.PC.DD2) and chromatography with end-capped octadecylsilyl (ODS) column using aqueous solutions of acetonitrile as the mobile phases. Using multiple linear regression, we derived the statistically significant quantitative structure-activity relationships. All these QSAR equations were validated and were found to be very good. The investigations highlight the significance and possibilities of liquid chromatographic techniques with three different reversed-phase materials and QSARs methods in predicting the pharmacokinetic properties of our important organic compounds and reducing unethical animal testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.