We present an alternative to the conventional approach, phantoms without scattering nanoparticles, where scattering is achieved by the material itself: spherical cavities trapped in a silicone matrix. We describe the properties and fabrication of novel optical phantoms based on a silicone elastomer polydimethylsiloxane (PDMS) and glycerol mixture. Optical properties (absorption coefficient µa , reduced scattering coefficient µs' , and anisotropy factor g) of the fabricated phantoms were retrieved from spectrophotometric measurements (in the 400-1100 nm wavelength range) using the inverse adding-doubling method. The internal structure of the phantoms was studied under a scanning electron microscope, and the chemical composition was assessed by Raman spectroscopy. Composition of the phantom material is reported along with the full characterization of the produced phantoms and ways to control their parameters.
Abstract. We present the optical measurement techniques used in human skin phantom studies. Their accuracy and the sources of errors in microscopic parameters' estimation of the produced phantoms are described. We have produced optical phantoms for the purpose of simulating human skin tissue at the wavelength of 930 nm. Optical coherence tomography was used to measure the thickness and surface roughness and to detect the internal inhomogeneities. A more detailed study of phantom surface roughness was carried out with the optical profilometer. Reflectance, transmittance, and collimated transmittance of phantoms were measured using an integrating-sphere spectrometer setup. The scattering and absorption coefficients were calculated with the inverse adding-doubling method. The reduced scattering coefficient at 930 nm was found to be 1.57 AE 0.14 mm −1 and the absorption was 0.22 AE 0.03 mm −1 . The retrieved optical properties of phantoms are in agreement with the data found in the literature for real human tissues.
Extensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with optical properties similar to those of living human tissues. Development and improvement of in vivo optical measurement systems requires the use of stable tissue phantoms with known characteristics, which are mainly used for calibration of such systems and testing their performance over time. Optical and mechanical properties of phantoms depend on their purpose. Nevertheless, they must accurately simulate speci¯c tissues they are supposed to mimic. Many tissues and organs including head possess a multi-layered structure, with speci¯c optical properties of each layer. However, such a structure is not always addressed in the presentday phantoms. In this paper, we focus on the development of a plain-parallel multi-layered phantom with optical properties (reduced scattering coe±cient 0 s and absorption coe±cient a ) corresponding to the human head layers, such as skin, skull, and gray and white matter of the brain tissue. The phantom is intended for use in noninvasive di®use near-infrared spectroscopy (NIRS) of human brain. Optical parameters of the fabricated phantoms are reconstructed using spectrophotometry and inverse adding-doubling calculation method. The results show that polyvinyl chloride-plastisol (PVCP) and zinc oxide (ZnO) nanoparticles are suitable materials for fabrication of tissue mimicking phantoms with controlled scattering properties. Good matching
Difficulties with interpersonal communication experienced by individuals with autism spectrum disorders (ASD) significantly contribute to their underrepresentation in the workforce as well as problems experienced while in employment. Consistently, it is vital to understand how communication within the employment cycle of this group can be improved. This study aims to identify and analyze the possibilities of modifying the communication processes around recruitment, selection, onboarding, and job retention to address the specific characteristics and needs of the representatives of this group. This qualitative study is based on 15 in-depth interviews conducted with 21 field experts, i.e.,: therapists, job trainers, and entrepreneurs employing people with ASD. The findings of this research informed the creation of an inclusive communication model supporting the employment cycle of individuals with ASD. The most important recommendations within the model that was created include the modification of job advertisements, use of less structured job interviews, providing opportunities for mentorship, and supportive and non-direct, electronically mediated communication. To apply the above-mentioned solutions and take full advantage of the talents of people with ASD, it is also necessary to provide tailored sensitivity and awareness training programs for their direct addressees as well as their neurotypical colleagues, including managerial staff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.