This study was designed to determine the degree and type of bacterial contamination in boar semen (79 ejaculates from Large White and Landrace boars) and its consequences for sperm quality during storage (27 extended semen samples, 16 o C for five days) under practical conditions of artificial insemination (AI). The results revealed the presence of aerobic bacteria in 99% of the ejaculates (from 80 to 370 ×10 6 colony-forming units/mL). Most of the ejaculates contained two or three bacterial contaminants, while the Staphylococcus, Streptococcus, and Pseudomonas bacterial genera were most frequently isolated. Also detected were Enterobacter spp., Bacillus spp., Proteus spp., Escherichia coli, P. fluorescens, and P. aeruginosa. In general, the growth of certain bacterial types isolated prior to semen processing (Enterobacter spp., E. coli, P. fluorescens, and P. aeruginosa) was not discovered on different days of storage, but fluctuations (with a tendency towards increases) were found in the frequencies of Bacillus spp., Pseudomonas spp., and Staphylococcus spp. isolates up to the end of storage. Semen preserved for five days exhibited decreases in sperm motility and increases in the average number of total aerobic bacteria; this was associated with sperm agglutination, plasma membrane disruption, and acrosome damage. We inferred that, due to the different degrees and types of bacterial contaminants in the boar ejaculates, the inhibitory activity of some antimicrobial agents used in swine extenders (such as gentamicin sulfate) may be limited. Because such agents can contribute to the overgrowth of certain aerobic bacteria and a reduction in the quality of stored semen, procedures with high standards of hygiene and microbiological control should be used when processing boar semen.
The aim of the study was to examine an in vitro effect of the three bacterial strains (Escherichia coli, Staphylococcus haemolyticus and Bacteroides ureolyticus) on ejaculated spermatozoa with reference to sperm membrane integrity and mitochondrial activity. The study was carried out on swim-up-separated spermatozoa from 12 normozoospermic volunteers. Sperm plasma membrane stability was evaluated by the LIVE/DEAD Sperm Viability Kit and by the merocyanine 540 test. Mitochondrial activity was evaluated using the JC-1 test as well as the NADH-dependent NBT assay. The percentage of dead cells was significantly higher in spermatozoa treated with B. ureolyticus as compared to that of control spermatozoa (P < 0.01). All the bacterial strains applied affected sperm plasma membrane architecture measured by M540 test (P < 0.01). Moreover, the presence of E. coli or B. ureolyticus was connected with significant decrease in both the number of cells with high mitochondrial transmembrane potential (ΔΨm) and the cells with normal oxidoreductive function of mitochondria (P < 0.05 as compared to untreated cells). To conclude, the contact of bacteria with ejaculated spermatozoa can be a reason for severe injury of sperm membrane stability and mitochondrial activity with potential consequences for male fertility.
Cytochemical reactions for mitochondrial NADH-dependent dehydrogenases (diaphorase/NADH which is related to flavoprotein), NAD-dependent dehydrogenases (isocitrate, malate) and succinate dehydrogenase were carried out in rat spermatozoa. In addition to a morphological evaluation, the intensity of the reactions was assessed using a computer image analysing system (Quantimet 600 S). The intensity of the reactions was examined in sperm midpieces by measuring integrated optical density (IOD) and mean optical density (MOD). The activity of mitochondrial respiratory chain complexes was also analysed using the polarographic method. In the population of spermatozoa studied, all whole spermatozoa midpieces were completely filled with formazans, the product of the cytochemical reaction. These morphological findings corresponded to the values obtained for IOD and MOD for the given enzymes. In the oxygraphic studies, the spermatozoa demonstrated consumption of oxygen in the presence of substrates for I, II and IV complexes and their mitochondria revealed normal integrity and sensitivity to the substrates and inhibitors. However, the oxygraphic studies revealed differences between the sperm and somatic cells. These differences concerned the stimulation of pyruvate oxidation by malate, the lack of an effect of malonic acid on phenazine methosulphate (an acceptor of electrons) oxidation and the lack of an effect of cytochrome c on ascorbate oxidation. The cytochemical method, together with densitometric measurements, enables: (1) the reaction intensity to be determined objectively; (2) subtle and dramatic differences in reaction intensity to be revealed between spermatozoa that do not differ under morphological evaluation of the intensity; (3) possible defects within the mitochondrial sheath to be located and assessed in a large number of spermatozoa. This method can be used as a screening method alongside the routine morphological examination of spermatozoa. On the other hand, the oxygraphic method in the inner membrane of mitochondria can reveal functional changes which are related to the action of respiratory chain complexes and display characteristic features of mitochondria energy metabolism. The methods used are complementary and allow the complex evaluation of mitochondria in spermatozoa. Both methods can be used in experimental and clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.