Phosphodiesterase 5 (PDE5) is one of the most extensively studied phosphodiesterases that is highly specific for cyclic-GMP hydrolysis. PDE5 became a target for drug development based on its efficacy for treatment of erectile dysfunction. In the present study, we synthesized four novel analogues of the phosphodiesterase type 5 (PDE5) inhibitor—tadalafil, which differs in (i) ligand flexibility (rigid structure of tadalafil vs. conformational flexibility of newly synthesized compounds), (ii) stereochemistry associated with applied amino acid building blocks, and (iii) substitution with bromine atom in the piperonyl moiety. For both the intermediate and final compounds as well as for the parent molecule, we have established the crystal structures and performed a detailed analysis of their structural features. The initial screening of the cytotoxic effect on 16 different human cancer and non-cancer derived cell lines revealed that in most cases, the parent compound exhibited a stronger cytotoxic effect than new derivatives, except for two cell lines: HEK 293T (derived from a normal embryonic kidney, that expresses a mutant version of SV40 large T antigen) and MCF7 (breast adenocarcinoma). Two independent studies on the inhibition of PDE5 activity, based on both pure enzyme assay and modulation of the release of nitric oxide from platelets under the influence of tadalafil and its analogues revealed that, unlike a reference compound that showed strong PDE5 inhibitory activity, the newly obtained compounds did not have a noticeable effect on PDE5 activity in the range of concentrations tested. Finally, we performed an investigation of the toxicological effect of synthesized compounds on Caenorhabditis elegans in the highest applied concentration of 6a,b and 7a,b (160 μM) and did not find any effect that would suggest disturbance to the life cycle of Caenorhabditis elegans. The lack of toxicity observed in Caenorhabditis elegans and enhanced, strengthened selectivity and activity toward the MCF7 cell line made 7a,b good leading structures for further structure activity optimization and makes 7a,b a reasonable starting point for the search of new, selective cytotoxic agents.
Adenoviral dodecahedron (Dd) is a virus-like particle composed of twelve pentameric penton base (Pb) proteins, responsible for adenovirus cell penetration. It is generated spontaneously in the baculovirus system upon expression of the Pb gene of adenovirus serotype 3. This particle shows remarkable cell penetration ability with 2,00,000-3,00,000 Dd internalized into one cell in culture, conceivably delivering several millions of foreign cargo molecules to the target cell. We have used it in the past for delivery of small drugs as well as a vaccination platform, in which Dd serves as a particulate vaccine delivery system. Since development of new biomedicals depends strongly on the cost of their expression and purification, we attempted, albeit unsuccessfully, to obtain Dd expression in bacteria. We therefore retained its expression in the baculovirus/insect cells system but introduced significant improvements in the protocols for Dd expression and purification, leading to considerable savings in time and improved yield.
One of the major factors limiting the effectiveness of cancer chemotherapy is inefficient drug delivery. Systems enabling efficient delivery and enhanced intracellular uptake appear particularly promising in this respect. Virus-like particle, adenoviral dodecahedron (Dd), employs receptor-mediated endocytosis for cell penetration and is able to deliver intracellularly dozens of cargo molecules attached to one particle. We focused on studying Dd properties in the context of cancer treatment, showing that intratumoral injection of Dd, assessed in mouse xenograft model, results in vector accumulation in tumor without spreading in off-target organs. Moreover, we demonstrated that Dd is a promising vector targeting leukocytes and drug-resistant cancer cells. Dd uptake by human blood cells analyzed in vitro indicated the preference for leukocytes in comparison to red blood cells and platelets. Furthermore, internalization of Dd-doxorubicin conjugate by drug-resistant cells leads to increased nuclear accumulation of doxorubicin and significant enhancement of cytotoxicity against target cancer cells.
New pathogens responsible for novel human disease outbreaks in the last two decades are mainly the respiratory system viruses. Not different was the last pandemic episode, caused by infection of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One of the extensively explored targets, in the recent scientific literature, as a possible way for rapid development of COVID-19 specific drug(s) is the interaction between the receptor-binding domain of the virus’ spike (S) glycoprotein and human receptor angiotensin-converting enzyme 2 (hACE2). This protein-protein recognition process is involved in the early stages of the SARS-CoV-2 life cycle leading to the host cell membrane penetration. Thus, disrupting this interaction may block or significantly reduce the infection caused by the novel pathogen. Previously we have designed (by in silico structure-based analysis) three very short peptides having sequences inspirited by hACE2 native fragments, which effectively bind to the SARS-CoV-2 S protein and block its interaction with the human receptor. In continuation of the above mentioned studies, here we presented an application of molecular modeling approach resulting in improved binding affinity of the previously proposed ligand and its enhanced ability to inhibit meaningful host-virus protein-protein interaction. The new optimized hexapeptide binds to the virus protein with affinity one magnitude higher than the initial ligand and, as a very short peptide, has also great potential for further drug development. The peptide-based strategy is rapid and cost-effective for developing and optimizing efficient protein-protein interactions disruptors and may be successfully applied to discover antiviral candidates against other future emerging human viral infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.