Measured cTnT concentrations were chronically elevated in the majority of patients with skeletal myopathies, whereas cTnI elevation was rare. Our data indicate that cross-reaction of the cTnT immunoassay with skeletal muscle troponin isoforms was the likely cause.
Objective: The aim of this study was to evaluate the image quality (IQ) and performance of an artificial intelligence (AI)-based computer-aided detection (CAD) system in photon-counting detector computed tomography (PCD-CT) for pulmonary nodule evaluation at different low-dose levels. Materials and Methods: An anthropomorphic chest-phantom containing 14 pulmonary nodules of different sizes (range, 3-12 mm) was imaged on a PCD-CT and on a conventional energy-integrating detector CT (EID-CT). Scans were performed with each of the 3 vendor-specific scanning modes (QuantumPlus [Q+], Quantum [Q], and High Resolution [HR]) at decreasing matched radiation dose levels (volume computed tomography dose index ranging from 1.79 to 0.31 mGy) by adapting IQ levels from 30 to 5. Image noise was measured manually in the chest wall at 8 different locations. Subjective IQ was evaluated by 2 readers in consensus. Nodule detection and volumetry were performed using a commercially available AI-CAD system. Results: Subjective IQ was superior in PCD-CT compared with EID-CT (P < 0.001), and objective image noise was similar in the Q+ and Q-mode (P > 0.05) and superior in the HR-mode (PCD 55.8 ± 11.7 HU vs EID 74.8 ± 5.4 HU; P = 0.01). High resolution showed the lowest image noise values among PCD modes (P = 0.01). Overall, the AI-CAD system delivered comparable results for lung nodule detection and volumetry between PCD-and dose-matched EID-CT (P = 0.08-1.00), with a mean sensitivity of 95% for PCD-CT and of 86% for dose-matched EID-CT in the lowest evaluated dose level (IQ5). Q+ and Q-mode showed higher false-positive rates than EID-CT at lower-dose levels (IQ10 and IQ5). The HR-mode showed a sensitivity of 100% with a false-positive rate of 1 even at the lowest evaluated dose level (IQ5; CDTI vol , 0.41 mGy). Conclusions: Photon-counting detector CTwas superior to dose-matched EID-CT in subjective IQ while showing comparable to lower objective image noise. Fully automatized AI-aided nodule detection and volumetry are feasible in PCD-CT, but attention has to be paid to false-positive findings.
Clinical presentation of left ventricular non-compaction cardiomyopathy (LVNC) can be heterogeneous from asymptomatic expression to congestive heart failure. Deformation indices assessed by cardiovascular magnetic resonance (CMR) can determine subclinical alterations of myocardial function and have been reported to be more sensitive to functional changes than ejection fraction. The objective of the present study was to investigate the determinants of myocardial deformation indices in patients with LVNC. Twenty patients with LVNC (44.7 ± 14.0 years) and twenty age- and gender-matched controls (49.1 ± 12.4 years) underwent functional CMR imaging using an ECG-triggered steady state-free-precession sequence (SSFP). Deformation indices derived with a feature tracking algorithm were calculated including end-systolic global longitudinal strain (GLS), circumferential strain (GCS), longitudinal and circumferential strain rate (SRll and SRcc). Twist and rotation were determined using an in-house developed post-processing pipeline. Global deformation indices (GLS, GCS, SRll and SRcc) were significantly lower in patients with LVNC compared to healthy controls (all, p < 0.01), especially for midventricular and apical regions. Apical rotation and twist were impaired for LVNC (p = 0.007 and p = 0.012), but basal rotation was preserved. Deformation indices of strain, strain rate and twist correlated well with parameters of the non-compacted myocardium, but not with the total myocardial mass or the thinning of the compacted myocardium, e.g. r = 0.595 between GLS and the non-compacted mass (p < 0.001). In conclusion, CMR deformation indices are reduced in patients with LVNC especially in affected midventricular and apical slices. The impairment of all strain and twist parameters correlates well with the extent of non-compacted myocardium.
Background We examined the dynamic response of the myocardium to infarction in a longitudinal porcine study using relaxometry, functional as well as diffusion cardiovascular magnetic resonance (CMR). We sought to compare non contrast CMR methods like relaxometry and in-vivo diffusion to contrast enhanced imaging and investigate the link of microstructural and functional changes in the acute and chronically infarcted heart. Methods CMR was performed on five myocardial infarction pigs and four healthy controls. In the infarction group, measurements were obtained 2 weeks before 90 min occlusion of the left circumflex artery, 6 days after ischemia and at 5 as well as 9 weeks as chronic follow-up. The timing of measurements was replicated in the control cohort. Imaging consisted of functional cine imaging, 3D tagging, T2 mapping, native as well as gadolinium enhanced T1 mapping, cardiac diffusion tensor imaging, and late gadolinium enhancement imaging. Results Native T1, extracellular volume (ECV) and mean diffusivity (MD) were significantly elevated in the infarcted region while fractional anisotropy (FA) was significantly reduced. During the transition from acute to chronic stages, native T1 presented minor changes (< 3%). ECV as well as MD increased from acute to the chronic stages compared to baseline: ECV: 125 ± 24% (day 6) 157 ± 24% (week 5) 146 ± 60% (week 9), MD: 17 ± 7% (day 6) 33 ± 14% (week 5) 29 ± 15% (week 9) and FA was further reduced: − 31 ± 10% (day 6) − 38 ± 8% (week 5) − 36 ± 14% (week 9). T2 as marker for myocardial edema was significantly increased in the ischemic area only during the acute stage (83 ± 3 ms infarction vs. 58 ± 2 ms control p < 0.001 and 61 ± 2 ms in the remote area p < 0.001). The analysis of functional imaging revealed reduced left ventricular ejection fraction, global longitudinal strain and torsion in the infarct group. At the same time the transmural helix angle (HA) gradient was steeper in the chronic follow-up and a correlation between longitudinal strain and transmural HA gradient was detected (r = 0.59 with p < 0.05). Comparing non-gadolinium enhanced data T2 mapping showed the largest relative change between infarct and remote during the acute stage (+ 33 ± 4% day 6, with p = 0.013 T2 vs. MD, p = 0.009 T2 vs. FA and p = 0.01 T2 vs. T1) while FA exhibited the largest relative change between infarct and remote during the chronic follow-up (+ 31 ± 2% week 5, with p = N.S. FA vs. MD, p = 0.03 FA vs. T2 and p = 0.003 FA vs. T1). Overall, diffusion parameters provided a higher contrast (> 23% for MD and > 27% for FA) during follow-up compared to relaxometry (T1 17–18%/T2 10–20%). Conclusion During chronic follow-up after myocardial infarction, cardiac diffusion tensor imaging provides a higher sensitivity for mapping microstructural alterations when compared to non-contrast enhanced relaxometry with the added benefit of providing directional tensor information to assess remodelling of myocyte aggregate orientations, which cannot be otherwise assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.