Stem cell therapies offer a great promise for regenerative and reconstructive medicine, due to their self-renewal and differentiation capacity. Although embryonic stem cells are pluripotent, their utilization involves embryo destruction and is ethically controversial. Therefore, adult tissues that have emerged as an alternative source of stem cells and perinatal tissues, such as the umbilical cord, appear to be particularly attractive. Wharton’s jelly, a gelatinous connective tissue contained in the umbilical cord, is abundant in mesenchymal stem cells (MSCs) that express CD105, CD73, CD90, Oct-4, Sox-2, and Nanog among others, and have the ability to differentiate into osteogenic, adipogenic, chondrogenic, and other lineages. Moreover, Wharton’s jelly-derived MSCs (WJ-MSCs) do not express MHC-II and exhibit immunomodulatory properties, which makes them a good alternative for allogeneic and xenogeneic transplantations in cellular therapies. Therefore, umbilical cord, especially Wharton’s jelly, is a promising source of mesenchymal stem cells.
The growth and development of oocyte affect the functional activities of the surrounding somatic cells. These cells are regulated by various types of hormones, proteins, metabolites, and regulatory molecules through gap communication, ultimately leading to the development and maturation of oocytes. The close association between somatic cells and oocytes, which together form the cumulus-oocyte complexes (COCs), and their bi-directional communication are crucial for the acquisition of developmental competences by the oocyte. In this study, oocytes were extracted from the ovaries obtained from crossbred landrace gilts and subjected to in vitro maturation. RNA isolated from those oocytes was used for the subsequent microarray analysis. The data obtained shows, for the first time, variable levels of gene expression (fold changes higher than |2| and adjusted p-value < 0.05) belonging to four ontological groups: regulation of cell proliferation (GO:0042127), regulation of cell migration (GO:0030334), and regulation of programmed cell death (GO:0043067) that can be used together as proliferation, migration or apoptosis markers. We have identified several genes of porcine oocytes (ID2, VEGFA, BTG2, ESR1, CCND2, EDNRA, ANGPTL4, TGFBR3, GJA1, LAMA2, KIT, TPM1, VCP, GRID2, MEF2C, RPS3A, PLD1, BTG3, CD47, MITF), whose expression after in vitro maturation (IVM) is downregulated with different degrees. Our results may be helpful in further elucidating the molecular basis and functional significance of a number of gene markers associated with the processes of migration, proliferation and angiogenesis occurring in COCs.
The efficiency of the process of obtaining mature oocytes, and then of porcine embryos in vitro depends on many factors and requires meeting many conditions. These include selection of morphologically appropriate oocytes, selection of appropriate medium components, as well as a number of abiotic factors (appropriate microenvironment during in vitro culture). Oocytes were taken from 45 pubertal crossbred Landrace gilts. The BCB test was carried out. BCB + oocytes were divided into two groups: “before IVM” and “after IVM”. “Before IVM” oocytes were subjected to molecular analyzes immediately after collection, while “after IVM” oocytes underwent in vitro maturation and then the second BCB test. Oocytes that remained BCB+ after the second test were used for molecular analyzes using Affymetrix expression microarrays. A group of genes responsible for response to organic substance and response to abiotic stimulus, which underwent significant changes (decrease) was discovered after oocyte in vitro maturation. Genes such as MM, PLDP, SERPINH, MYOF, DHX9, HSPA5, VCP, KIT, SERPINH1, PLD1, and VCP showed the largest decrease after the culture period. The levels of these genes were therefore elevated in oocytes before the in vitro maturation process. In conclusion, a number of organic and abiotic factors have an impact on the process of the oocyte in vitro maturation. The presented results confirm the literature data in which the low efficiency of obtaining mature oocytes in in vitro conditions is mentioned, which further impacts the amount of viable embryos obtained.
An oviduct is an essential organ for gamete transport, oocyte maturation, fertilization, spermatozoon capacitation and early embryo development. The epithelium plays an important role in oviduct functioning. The products of secretory cells provide an optimal environment and influence gamete activities and embryonic development. The oviduct physiology changes during the female cycle, thus, the ratio of the secreted molecules in the oviduct fluid differs between phases. In this study, a differential gene expression in porcine oviduct epithelial cells was examined during the long-term primary in vitro culture. The microarray expression analysis revealed 2552 genes, 1537 of which were upregulated and 995 were downregulated after 7 days of culture, with subsequent changes in expression during 30 day-long culture. The obtained genes were classified into 8 GO BP terms, connected with angiogenesis and circulatory system development, extracted by DAVID software. Among all genes, 10 most up-regulated and 10 most down-regulated genes were selected for further investigation. Interactions between genes were indicated by STRING software and REACTOME FIViz application to the Cytoscape 3.6.0 software. Most of the genes belonged to more than one ontology group. Although studied genes are mostly responsible for angiogenesis and circulatory system development, they can also be found to be expressed in processes connected with fertilization and early embryo development. The latter function is focused on more, considering the fact that these genes were expressed in epithelial cells of the fallopian tube which is largely responsible for reproductive processes.Running title: Upregulation of angiogenetic process in OEC primary cultures
More than 80 diseases are currently classified as autoimmune, with a rising prevalence throughout the world. Systemic lupus erythematosus (SLE) is classified as a systemic autoimmune disorder, but the exact pathogenesis of SLE remains elusive. Currently available treatment strategies offer only the possibility for disease remission making it essential to develop more effective and safer strategies for treatment. Recently MSCs are gaining attention as attractive therapeutic tools for autoimmune disease treatment. Special focus should be given to MSCs originated from perinatal tissues such as Wharton’s jelly, as they present unique immunomodulatory properties and remarkably low immunogenicity. MSCs exert their immunomodula-tory effects via direct cell-to-cell communication as well as in a paracrine manner, creating possibility to apply secretome of MSCs as an individual therapeutic tool. Although the secretome of MSCs has not yet been utilized in SLE treatment, its efficacy has been suggested in other disorders, such as multiple sclerosis or Alzheimer’s disease. Regular administration of paracrine factors derived from MSCs could potentially effect in significant reduction of SLE symptoms and in maintenance of disease remission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.