The mechanisms for translocation of heavy metals from soil to epigeal mosses were investigated. The first mechanism was demonstrated for 137Cs and involved the uplifting of the pollutant-containing dust from the soil, followed by the local secondary deposition on surfaces of epigeal mosses and epiphytic lichens. The second mechanism involved the diffusion of metal cations from the soil through water wetting the moss into the gametophyte. The mechanism was demonstrated by measuring the electric conductance of wetted gametophytes with single ends immersed in solutions of Cu and Na salts. In addition, the concentrations of Cu and Cd were compared in moss samples exposed to the natural soil and to the soil contaminated with the metals. The exposition to the contaminated soil resulted in the statistically significant increase of metal concentrations in the gametophytes.
Heavy metals and radioactive compounds are potentially hazardous substances for plants, animals and humans in the Arctic. A good knowledge of the spatial variation of these substances in soil and primary producers, and their sources, is therefore essential. In the samples of lichen Thamnolia vermicularis, Salix polaris and Cassiope tetragona, and the soil samples collected in 2014 in Svalbard near Longyearbyen, the concentrations of the following heavy metals were determined: Mn, Ni, Cu, Zn, Cd, Pb and Hg, as well as the activity concentrations of the following: K-40, Cs-137, Pb-210, Pb-212, Bi-212, Bi-214, Pb-214, Ac-228, Th-231 and U-235 in the soil samples. The differences in the concentrations of the analytes accumulated in the different plant species and soil were studied using statistical methods. Sea aerosol was indicated as the source of Pb, Hg, Cs-137, Pb-210 and Th-231 in the studied area. A relatively high concentration of nickel was determined in the biota samples collected near Longyearbyen, compared to other areas of Svalbard. It was supposed that nickel may be released into the atmosphere as a consequence of the local coal mining around Longyearbyen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.