Objectives. Interest in periodontitis as a potential risk factor for atherosclerosis and its complications resulted from the fact that the global prevalence of periodontal diseases is significant and periodontitis may induce a chronic inflammatory response. Many studies have analyzed the potential impact of the Porphyromonas gingivalis, major pathogen of periodontitis, on general health. The purpose of this study was to find the presence of the Porphyromonas gingivalis DNA in the atherosclerotic plaques of coronary and carotid arteries and in the periodontal pockets in patients with chronic periodontitis, who underwent surgery because of vascular diseases. Methods and Results. The study population consisted of 91 patients with coronary artery disease or scheduled for carotid endarterectomy. The presence of Porphyromonas gingivalis DNA in atheromatous plaques and in subgingival samples was determined by PCR. Bacterial DNA was found in 21 of 91 (23%) samples taken from vessels and in 47 of 63 (74.6%) samples from periodontal pockets. Conclusions. Porphyromonas gingivalis DNA is frequently found in atheromatous plaques of patients with periodontitis. That is why more research should be conducted to prove if this periopathogen may have an impact on endothelium of patients at risk of atherosclerosis.
Traditional methods of non-surgical treatment of periodontitis, including mechanical scaling/root planing (SRP), do not guarantee remission of the disease. Local delivery of antimicrobial agents in periodontitis entails antimicrobial therapy placed directly in periodontal pockets. The advantage of this form of treatment is that the concentration of the drug after application significantly exceeds the minimum inhibitory concentration (MIC) and persists for up to several weeks. Therefore, many systems of locally applied devices, using a variety of antibiotics or antiseptics have been developed. There is continuous research aimed at introducing new forms of locally administered drugs, some of which have not proved to be effective, while others are promising. For almost 30 years such systems have been used for treatment as an adjuvant to SRP, and their efficacy has been evaluated. The aim of this article is to systematically review the contemporary literature regarding the currently available chemotherapeutics locally administered in the treatment of periodontitis.
Photodynamic therapy is a novel therapeutic approach for eradicating pathogenic bacteria in periodontal disease. Inactivation of microorganisms using photodynamic therapy has been defined as either antimicrobial photodynamic therapy (aPDT), photodynamic antimicrobial chemotherapy (PACT) or photodynamic disinfection. The use of aPDT requires a non-toxic photosensitizer, harmless visible light and oxygen. The photosensitizer binds to targeted bacteria and then can be activated by light of the appropriate wavelength in the presence of oxygen. Photoinactivation of bacteria is tightly restricted to the localization of the photosensitizer, ensuring the protection of distant cells from side-effects. Because of the fact that conventional treatment such as scaling and root planing (SRP) does not completely eliminate periodontal pathogens, especially in deep periodontal pockets, aPDT may be considered to be an alternative therapeutic strategy. This article describes the mechanism of aPDT and novel approaches such as nanoparticles. The aim of the study was to review the literature concerning the assessment of the effectiveness of aPDT in periodontitis treatment. Although studies have not indicated the superiority of aPDT compared to conventional periodontitis treatment, antimicrobial photodynamic treatment has been reported to be effective as an adjunct to conventional therapy to destroy bacteria in sites where there is limited access for mechanical instrumentation.
Periodontal therapy focuses on thorough removal of subgingival calculus and plaque products followed by the smoothing out of root surfaces. However, such conventional mechanotherapeutic approaches are inefficient with regard to microbial biofilm elimination from the space between the root and deep periodontal pockets. Therefore, local chemotherapeutic agents need to be applied. Local antimicrobial treatment is also considered a safer treatment, as it avoids systemic complications related to drug application. In this study, porous matrices consisting of gelatin (GE) and cellulose derivatives (carboxymethylcellulose (CMC) and hydroxyethyl cellulose (HEC)) were loaded with antimicrobial drug metronidazole (MTZ). The matrices’ structural morphology, physiochemical properties, swelling and degradation ratio, mechanical properties, and MTZ release from the matrices were analyzed. Additionally, cytotoxicity tests for fibroblast and osteoblast cell cultures (L929 and U2-OS, respectively) and antimicrobial activity assessments of MTZ-loaded matrices against anaerobic Bacteroides sp. Bacteria were performed. Finally, clinical application of HEC matrices into periodontal pockets was conducted. The applied matrices showed a high antibacterial efficacy and a moderate cytotoxicity in vitro. The clinical application of HEC dressings corresponded with the decrease of periodontal pockets’ depth and bleeding observed 1 month after a single application. The presented results show that intra-pocket application of metronidazole using manufactured matrices may serve not only as a support for a standard treatment in periodontal practice but also as an alternative to systemic drug administration in this setting. Clinical data were analyzed using a nonparametric Friedman’s ANOVA for dependent trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.